UNCLASSIFIED

AD NUMBER AD860250 **NEW LIMITATION CHANGE** TO Approved for public release, distribution unlimited **FROM** Distribution: Further dissemination only as directed by Army Limited War Laboratory, Attn: CRDL-WL-6B, Aberdeen Proving Ground, MD 21005, OCT 1969, or higher DoD authority. **AUTHORITY** TECOM 1tr, 31 Oct 1981

ΑD

(20)

AMCMS Code No. 5696.2300 USATECOM Project No. 8-WE-602-016-002 Report No. APG-MT-3350

FINAL REPORT ON

ENGINEER DESIGN TEST

OF

20-ROUND PLASTIC MAGAZINE

FOR MIGA1 RIFLES

BY

FRANKLIN H. MILLER

OCTOBER 1969

STATEMENT #5 UNCLASSIFIED

This dominant may be further distributed by any holder only with specific prior approval of the specific prior approval of t

Aberdeen Proving Ground and

OCT 1 7 1969

ABERDEEN PROVING GROUND

ABERDEEN PROVING GROUND, MARYLAND

Best Available Copy

REPRODUCTION LIMITATIONS

Reproduction of this document in whole or in part is prohibited except with the permission of <u>CO</u>, <u>USALWL</u>, <u>ATTN</u>: <u>CRDLWL-6B</u>

DDC is authorized to reproduce this document for United States Government purposes.

DISPOSITION INSTRUCTIONS

Destroy this report in accordance with AR 380-5 when no longer needed. Do not return it to the originator.

DISCLAIMER

The findings in this report are not to be construed as an official Department of the Army position, unless so designated by other authorized documents issued and approved by the Department of the Army.

AMCMS CODE NO. 5696.2300

ENGINEER DESIGN TEST OF 20 ROUND PLASTIC MAGAZINE FOR M16A1 RIFLES.

9) FINAL REPOT. 12 De: 68-26 Am 173

FRANKLIN H./MILLER

11 gct 69

(14) APG-MT- 3350

ABERDEEN PROVING GROUND ABERDEEN PROVING GROUND, MARYLAND 21005

iii

(404062)

(Following Page Blank)

1479

TABLE OF CONTENTS

!	PAGE											
ABSTRACT	.vi											
FOREWORD												
SECTION 1. INTRODUCTION												
1.1 BACKGROUND 1.2 DESCRIPTION OF MATERIEL 1.3 TEST OBJECTIVE 1.4 SUMMARY OF RESULTS 1.5 CONCLUSIONS 1.6 RECOMMENDATIONS	. 1 . 2 . 2 . 5											
SECTION 2. DETAILS OF TEST												
2.1 INTRODUCTION 2.2 INITIAL INSPECTION 2.3 EXTREME LOW TEMPERATURE TEST (-65°F) 2.4 EXTREME HIGH TEMPERATURE TEST (+155°F) 2.5 FUNCTION AND DURABILITY TEST 2.6 DUST TEST (STATIC) 2.7 DUST TEST (DYNAMIC) 2.8 SAND TEST 2.9 MUD TEST 2.10 WATER IMMERSION TEST 2.11 SOLVENTS AND LUBRICANTS COMPATIBILITY TEST 2.12 DISPLACEMENT - TIME STUDY	.8 19 24 29 30 34 38 42 43 45											
SECTION 3. APPENDICES												
TEST DATA	II-1 II-1											

ABSTRACT

The third in a series of engineer design tests of 20-round plastic magazines for the M16A1 rifle was conducted at Aberdeen Proving Ground by the Materiel Test Directorate from 12 December 1968 to 26 August 1969. Equal numbers of test and control magazines were subjected to a series of comparative evaluations to determine function performance characteristics and material durability at -65°F, +155°F, and ambient range temperature (+70°F ± 30°F), and in adverse conditions of mud, sand, dust, and water. The test magazine material was checked for compatibility with various nonstandard solvents and lubricants. A displacement - time study was made of the magazines to determine cartridge positioning characteristics during firing. The test results reveal that the test magazine requires further design engineering to improve performance in adverse conditions and to increase material durability at low temperature.

EOREWORD

Noterial Test Directorate was responsible for conducting the test and preparing the test report.

ABERDEEN PROVING GROUND ABERDEEN PROVING GROUND, MARYLAND 21005

USATECOM PROJECT NO. 8 WE 602 016 002

FINAL REPORT ON ENGINEER DESIGN TEST OF 20-ROUND PLASTIC MAGAZINE FOR M16A1 RIFLES

12 DECEMBER 1968 to 26 AUGUST 1969

SECTION 1. INTRODUCTION

1.1 BACKGROUND

The inception of the disposable magazine concept during 1967 was in response to an ENSURE requirement for a low-cost (\$0.01 per round of armunition contained) magazine capable of reliable one-time use in the M16A1 rifle. As a consequence of the initial evaluation of seven designs and subsequent selection, modification, and ratest of two designs, it was determined that a disposable magazine could be made that approached the performance level of the standard item; however, the estimated production cost would exceed \$0.20 for a 20-round magazine. A re-evaluation of the design concept and required use was made. The US Army Limited War Laboratory (USALWL) then entered into a redesign program to produce a magazine capable of performing as a reusable item, equal to or better than the standard 20-round aluminum magazine. The plastic magazine presently being evaluated at the direction of US Army Test and Evaluation Command (USATECOM)(Reference 6) is the product of this redesign program.

1.2 DESCRIPTION OF MATERIEL

The maximum capacity of the test magazine is 20 rounds of ammunition, vertically stacked in two adjacent rows of ten rounds each. The magazine body, follower, and floor plate are made of type 6-10 nylon with 50% fiber glass reinforcement. The rectangular-coiled follower spring is made of coated carbon steel wire. Position of the magazine when inserted into the weapon is regulated by a locking recess located on the left side of the magazine body.

During weapon firing the cartridges are alternately fed from the right and left sides of the magazine. The follower spring maintains pressure (transmitted through the follower) on the cartridge stack, properly positioning each round during feeding and, after the last round is fired, causes the follower to actuate the bolt stop.

1.3 TEST OBJECTIVE

The over-all objective of this evaluation was to determine the durability and functional reliability of the test item and to compare these data with those of the standard magazine.

1.4 SUMMARY OF RESULTS

1.4.1 Initial Inspection

The test and control magazines were uniformly manufactured; however, some dimensions were not within drawing specifications (see measurements in Appendix I).

Inspection of the test magazines revealed the following discrepancies in design and manufacture:

- a. Allowable tolerances of the magazine body (inside width) and follower width at the points of contact with the magazine caused premature release of the last cartridge (round 20) during feeding (Reference 3 and paragraph 2.2.4).
- b. Irregularities of material distribution and shrinkage in the floor plate resulting in incomplete formation of the lock detent (Figures 2.2-7 and 2.2-8).
- c. Configuration of the magazine filler grooves required excessive force to be applied to the filler during its attachment and removal. This condition resulted in injury to the personnel loading the magazines (cut fingers). Position of the charger clips, which is regulated by the relative position of the filler to the magazine, was also affected when the filler could not be fully scated. Extreme care had to be exercised to prevent stacking two consecutively loaded rounds on the same side of the magazine. The double-stacking problem became increasingly aggravated with introduction of a redesigned follower (paragraph 1.4.4).

1.4.2 Extreme-Low Temperature (-65°F) Test

Compared to the USPEWE disposable plastic magazines previously evaluated (Reference 2) the present test item was less durable. This difference is demonstrated by the drop-test damage shown in Figures 2.3-1 through 2.3-3. Since the failure to feed (FF) malfunctions were caused by a design deficiency which was recognized during initial inspection, these stoppages were not charged to the test magazine performance. There were no other test magazine malfunctions.

Control magazines force to tail of five stoppages in addition to four magazines exhibiting for firing lefects caused by the drop test. These defects did not cause malfunctions.

Because of the material damage and EE type malfunctions, the USALWL representative requested that testing be terminated after completion of the first firing cycle.

1.4.3 Extreme High Temperature (+155°F) Test

An increase in plasticity of the test material at this temperature almost completely eliminated the feed lip breakage that occurred at -65°F; however, this flexibility (plasticity) contributed to the separation of the floor plate from the magazine body during the drop test. The FF-type malfunctions were not charged against performance of the test magazine since the malfunctions had previously been charged to a design deficiency (paragraphs 1.4.2 and 2.1). Excluding all malfunctions created by design and material defects, there were seven chargeable malfunctions with the test magazines.

A total of six malfunctions occurred with the control magazines. Three of these magazines had one malfunction each which was attributed to drop-test damage. This damage was repaired by reshaping the feed lips.

1.4.4 Function and Durability Test

Functioning performance of the test and control magazines was excellent. During the firing of 20,000 rounds of ammunition from each type, only two stoppages with the test and six with the control magazines occurred.

This was the first subtest in which the redesigned follower was used in the test magazine. The new follower eliminated the premature release of the last round in the magazine. Unfortunately this change created another problem. During reloading of the magazines the 10-round charger and magazine filler were used. The rectangular profile of the new follower (Figure 2.2-6) can cause incorrect positioning of the first two rounds stripped from the first clip. These rounds are stacked one on top of the other, which limits the magazine capacity to 19 rounds. This causes a feeding failure (double feed) if not corrected prior to firing. Malfunctions caused by incorrect loading were not experienced, only because of the careful loading procedures used.

1.4.5 Static Dust Test

The test magazines were divided into two groups of ten; one group with the original follower (round cartridge profile) and the other with the redesigned follower (rectangular cartridge profile). Twinty control magazines were used. The original test magazine design had a total of eight malfunction of which 50% occurred in attempting to fire the first round. A significant increase in stoppages was recorded for the magazines when the

redesigned follower was used. A total of 28 malfunctions occurred with only 9% being first-round types. Six out of these ten magazines ceased to function within the first-live rounds fired. Sixty-four per cent of the 14 stoppages which occurred with the control magazines were first round malfunctions.

1.4.6 Dynamic Dust Test

Testing was conducted with 21 redesigned test and an equal quantity of control magazines. Results of the first phase (magazines enclosed in plastic bags) indicate that test magazines do not degrade weapon performance. In the second phase (magazines without protective covering) the test magazine became susceptible to the same cessation of function experienced in the static dust test (paragraph 2.6).

1.4.7 Sand Test

This test, conducted with 20 redesigned test and 20 control magazines, reconfirms the inadequacy of the test item design. Due to the amount of bearing surface between the inside of the magazine body and its contact with the follower, follower spring, and 20 rounds of ammunition, the sand granules prevented the ammunition from rising in the magazine as the top round was removed. This difficulty was not experienced with the control magazines because of the point-contact design (reduced bearing area) which suspends the follower, tollower spring, and cartridge stack within the magazine body.

1.4.8 Mud Test

Results of this subtest, conducted with 20 redesigned test and 20 control magazines, indicate that performance of both magazine types is not entirely predictable, and depends on distribution of the mud within the magazine and around the ammunition. It is apparent, however, from the data accumulated, that the test magazine requires less force than does the control magazine for stripping the first round from the magazine, and if properly redesigned may improve functioning performance in this environment.

1.4.9 Water Immersion Test

This test was a dual-purpose evaluation. The 20 magazines of each type used in the static dust test were subjected to field-type cleaning while being immersed in water. Based on the results of test functioning, it was determined that the magazines are not adversely affected by short duration immersion in water and are easily maintained.

3.4.10 Delicents and Labraca its Compatiblity Test

No deleterious effects were created by application of various solvents and lubricants and the insecticide employed.

1.4.11 Displacement Time Study

This test was conducted in a "clean" environment, The results indicate that performance of the redesigned test magazine under this condition is equal to and probably better than the standard magazine. This determination excludes the reloading problem caused by the rectangular cartridge profile configuration of the modified follower and the influence that adverse conditions environments have upon magazine performance.

1.5 CONCLUSIONS

It is concluded that:

- The test magazine functions reliably when not subjected to adverse conditions and extreme temperature environments (ref pars. 1.4.4, 1.4.11, and 2.5.4).
- b. In order to improve operational reliability in adverse conditions environments, a change in the follower and magazine body configurations of the test magazine is required (ref pars. 1.4.5, 1.4.6 (phase 2), 1.4.7, 1.4.8, 2.6.4, 2.7.4, 2.8.4, and 2.9.4).
- c. Floor plate retention of the test magazines must be improved to prevent separation from the magazine body during rough handling (ref par. 1.4.4b and Table 2.4-1).
- d. The test magazine material durability must be brought up to the equivalent of that of the previous test item (ref par. 2.3.4).
- e. Redesign of the test magazine follower is required to prevent the possibility of improper loading when a magazine filler and chargers (clips) are used (ref pars. 1.4.4 and 2.5.4).
- f. The magazine filler positioning grooves are not compatible with the magazine filler which is supplied with the ammunition (ref par. 1.4.1c).
- g. Over-all performance of the test magazine approaches, but does not equal, that of the control (standard) magazine.

1.6 RECOMMENDATIONS

It is recommended that:

- a. Development of the plastic magazine be continued as follows:
 - 1) A round cartridge profile be used on the test magazine follower.
 - 2) The test magazine body be modified to reduce the total surface area which contacts the follower, cartridges, and follower spring. The shape of the test follower be changed to be compatible with the magazine body redesign.
 - 3) The groove in the magazine body which located the position of the magazine filler be changed to reduce the amount of force required to attach and remove the filler during reloaging.
 - 4) The floor plate be redesigned to improve the latching characteristics and thereby insure retention under all environments and rough handling conditions.
 - 5) All proposed changes to the M16A1 rifle be reviewed to insure continued compatibility of the magazine and weapon (paragraph 6c of Reference 4).
- b. The above recommendations be incorporated in the magazine design prior to any issuance of the test magazines for Southeast Asia (SEA) evaluation.

SECTION 2. DETAILS OF TEST

2.1 INTRODUCTION

A test plan outline (Reference 7) was furnished by USALWL as a guide to testing. A series of changes to this outline were verbally coordinated between Materiel Test Directorate (MTD) and USALWL at the direction of USATECOM (Reference 6). The final plan of test is reflected in the methods paragraphs of this section.

A design change was made in the test magazine follower which eliminated premature release of the last round from the magazine. Although this condition was detected during the initial inspection, implementation of the change could not be effected until after completion of the extreme-temperature tests. These tests were not refired with the redesigned-follower magazines since performance in adverse conditions tests with these magazines indicated that other changes were necessary. The primary change required is a reduction of the bearing surfaces inside of the magazine body where the follower, follower spring, and 20 cartridges are in contact. This change can be accomplished by inclusion of radial-form ribs, similar to those of the control magazine, and a change in follower profile to obtain minimum bearing surface without increaseing tilt (rotation about the longitudinal axis). This tilt contributes to premature release of the last round.

Listed in Table 2.1-I are the malfunctions encountered with the test and control magazines. The legend relates to all subtests in this report. Figure 2.1-1 shows the peculiar type of double feed malfunctions.

Table 2.1-I. Legend of Malfunctions

Malfunction	Description
FS1	Failure to strip first round from a fully loaded magazine.
STUB-1	Bullet méplat of first round from magazine contacts receiver below feed ramp of barrel extension.
FS	Failure to strip other than first round from a magazine.
BOB	Bolt override of base of top round in magazine.
FBR	Failure of bolt to remain rearward after last round is fired.
FF	Failure of magazine to feed a cartridge into proper position to be stripped from the feed lips.
DF	Double feed (Figure 2.1-1).

Figure 2.1-1: Right Side View of M16A1 Rifle Showing the Peculiar Type of DF Malfunction Which Occurred during This Test.

2.2 INITIAL INSPECTION

2.2.1 Objective

The objective was to determine the characteristics and condition of the test and support materiel prior to conducting the extreme temperature, adverse conditions, and reliability test phases.

2.2.2 Criteria

Criteria are as follows:

a. The component parts of the test magazines must be free of design, material, and manufacturing defects that would impair reliable functioning and durability.

- The assembled magazine must be capable of containing a maximum of 20 cartridges when fully loaded.
- The magazine must possess the capability of being loaded by use of 10-round chargers.

2.2.3 Method

All test and control magazines were visually inspected for manufacturing and material defects. Radiographic pictures (X ray) were obtained of all test magazines which were subjected to drop tests. Physical measurements were taken, as required, to determine the degree of manufacturing uniformity, dimensional conformity to the specification drawings, and compatibility with the M16A1 rifle.

Weapon measurements were taken, as required, to determine weapon serviceability. Each weapon was function-fired with test and control magazines in accordance with the schedule given in Table 2.2-1 to determine if any design defects, previously not discovered, were present. The weapons were cooled after trials 2, 4, and 5. The cyclic rate of each 20-round burst and function performance data for all firing were recorded.

Table 2.2-I. Inspection Test Firing Sequence

Trial No.	Firing Mount Type ^a	Magazine Type	Mode of Fire
1	QA	Control	3- to 5-round burst
2	QA	Control	20-round burst
3	QA	Test	3- to 5-round burst
4	QA	Test	20-round burst
5	Benchrest	Test	20-round burst

^aThe quality assurance (QA) mount was the standard item for use in testing M16A1 rifles at the various contractor's plants; benchrest signifies that the weapon was shoulder-supported during firing.

2.2.4 Results

The test and control magazines were uniformly manufactured, although some dimensional specifications were not met. Individual measurements are given in Appendix I. Figures 2.2-1 through 2.2-6 depict the test and control magazines and components thereof. Radiographs of the test magazine components show that variances in material distribution and nonuniform shrinkage caused irregularities in configuration of the floor plate latch detent (Figures 2.2-7 and 2.2-8).

Figure 2.2-1: Left Side View of 20-Round Aluminum (Control) Magazine.

Figure 2.2-2: Second Engineer Design Test (EDT) Magazine (Type 1A) Showing Left Side View, Note the Absense of Vertical Groove at Top Rear of Magazine Which Facilitates Attachment of Magazine Filler, and the Difference of the Base Configuration to That of Figure 2.2.4.

Figure 2.2-3: Top View of the Test Magazine As Molded Prior to Removal (by Sawing) of the Rear of the Feed Lips As Illustrated in Figure 2.2-4.

Figure 2.2-4: LEFT: Side View Showing Design Changes of Third EDT Manazine (Type 18), RIGHT: Rear View of Same Magazine Displaying Die Crack Mark.

Figure 2.2-5: Disassembled View of Test Magazine (Type 1B) Showing (TOP to BOTTOM) the Magazine Body, Follower, Follower Spring, and Floor Plate.

Figure 2.2-6: Comparison of Magazine Follower Designs: 1. Control Magazine. 2. Second EDT (Type 1A) Magazine. 3. Third EDT (Type 1B) First Design. 4.Third EDT (Type 1B) Second Design. (Nos. 2, 3, and 4 are Test Magazines.)

Figure 2.2-7: Radiograph (X Ray) of the Floor Plate from Test Magazine No. 168 Showing the Irregularities of Material Distribution and Flow Pattern.

Figure 2.2-8: Rear View of the Test Magazine No. 168 Showing irregularities of Floor Plate Latch Detent (LEFT) and a Normal Magazine (RIGHT) for Comparison.

Weights of the magazines are given in Table 2.2-III and weapon measurements in Table 2.2-III. The average cyclic rate of fire for the 15 weapons using the control magazine with the weapons fired from the QA test stand was 800 rds/min. The test magazines evaluated under the same conditions gave a 786 rds/min rate. A decrease of 22 rds/min was experienced when the weapons and test magazines were fired from the shoulder. This reduction in rate is considered normal and is related to shoulder-firing conditions.

Table 2.2-II. Component Composition and Weight of Test and Control Magazines

•		. .	Weight Ib Follower						
Magazine Type	Sample No.	Floor Piate	Original	Redesign	Body	Spring	Total ^a		
Турс				7.00037377					
Test ^b	1	0.02	0.01	0.01	0.11	0.03	0.17		
	2	.02	.01	.01	.11	.03	.17		
	2 3	.02	.01	.01	.11	.03	.17		
	4	.02	.01	.01	.11	.03	.17		
	5	.02	.01	.01	.11	.03	.17		
	6	.02	.01	.01	.11	.03	.17		
	7	.02	.01	.01	.11	.03	.17		
	8	.02	.01	.01	.11	.03	.17		
	9	.02	.01	.01	.11	.03	.17		
	10	.02	.01	.01	.11	.03	.17		
Average		0.02	0.01	0.01	0.11	0.03	0.17		
Control ^C	1	0.01	0.02	-	0.12	0.03	0.18		
	2	.01	.02		.12	.03	.18		
	2 3	.01	.02	-	.12	.03	.18		
	4	.01	.02	-	.12	.03	.18		
	5	.01	.02	-	.12	.03	.18		
	6 7	.01	.02	-	.12	.03	.18		
	7	.01	.02	•	.12	.03	.18		
	8	.01	.02	-	.12	.03	.18		
	9	.01	.02	•	.12	.03	.18		
	10	.01	.02	-	.12	.03	.18		
Average		0.01	0.02		0.12	0.03	0.18		

Only one follower (original or redesign) considered.

^bAll plastic components are made of nylon, type 6-10, with 50% fiber glass reinforcement. Follower spring material is carbon steel per specification QQ-W-470 with protentive finish 3.3.1 of MIL-STD-171.

CMagazine body is made of aluminum alloy 6061-0 strip per specification QQ-A-250-11 with magnesium content at 1.0/1.2%. T6 condition after forming and welding.

Minimum Brinnall 80 (10-mm ball > 500-kg load); finish MIL-A-8625, type 3; class 1, 0.0010 ± 0.0002 innh. Solid film lubricant electrofilm 99-A at 0.0002-/0.0004-inch thickness. Follower material is die casting alloy A-380, per specification QQ-A-591.

Floor plate materia: is 5061-T4 aluminum strip per specification QQ-A-225/8; etched finish 7.2.2 of MIL-STD-171, dyed black. Follower spring material is carbon steel per specification QQ-W-470, with finish 3.3.1 of MIL-STD-171.

Table 2.2 III. Physical Characteristics of Weapons

Weapon Type: M16A1 rifle.

Extreme variation

Weapon Nos. Physical Measurements, in. APG Assigned Firing Pin Protrusion **Head Space** Serial 1 1089798 0.034 1.4656 2 1090627 1.4646 .033 3 1090791 1.4646 .030 4 1091331 1.4646 .034 5 1091713 1.4666 .032 6 1092509 1.4646 .033 7 1094769 1.4656 .031 8 1094915 1.4646 .032 9 1096034 1.4656 .034 10 1096779 1.4646 .031 11 1096890 1.4646 .033 12 1097064 1.4646 .031 13 1097430 1.4656 .034 14 1100035 1.4656 .033 15 1101003 1.4646 .034 Average 1.4650 0.033 Maximum 1.4666 .034 Minimum 1.4646 .030

During the inspection firing, no malfunctions occurred with the control magazines. Six FF's and four FBR's occurred with the test magazines. Firing was from the QA test stand. An additional five FF-type stoppages occurred when the rifles were shoulder fired. In all instances the FF malfunctions were last-round occurrences where the loaded cartridge was incorrectly released from the magazine feed-lips prior to entry into the weapon chamber. The USALWL was notified about this design deficiency. They requested that the cytome-temperature tests be conducted to determine material durability and stated that a component redesign would be immediately undertaken to correct the problem. As a result, a new follower configuration was manufactured and ready for testing at the start of ambient-temperature function and Jurability and adverse conditions phases (Figure 2.2-9).

0.0020

.004

Figure 2.2-9: Cutaway View (Left Side Removed) of the Interior Configuration of the Test Magazine with Redesigned Follower Positioned toward the Bottom of the Magazine. The Three Arrows Indicate the Contact Surfaces of the Follower and Magazine Body Which Causes Seizure between These Components and Prevents Upward Movement of the Ammunition Stack during Firing in Adverse Conditions.

2.2.5 Analysis

The M16A1 rifles were found to be in satisfactory condition. The centrol magazines, having previously been purchased and accepted by the US Government, are considered representative of production samples and therefore satisfactory for test purposes although some dimensions exceeded tolerance allowances.

A change in configuration of the test magazine is required to eliminate the problem on nonretention of the last round. Gating of the floor plate die should be changed to insure complete formation of the lock detent. As a result of these design problems, the test magazine does not completely satisfy the test criteria.

2.3 EXTREME LOW TEMPERATURE TEST (65°F)

2.3.1 Objective

The objective was to determine the relative material durability and functional reliability of the test and control magazines.

2.3.2 Criterion

The material durability and operational reliability of the test magazine must be equal to or surpass that of the control magazine.

2.3.3 Method

Prior to testing, each rifle was cleaned with PS 661-B solvent and lubricated with MIL-L-14107 oil. Maintenance on the weapons during firing was performed only if unsatisfactory weapon functioning, not associated with magazine performance, was evidenced.

Five weapons, 50 each new test and control magazines, and 10,000 rounds of M193 ball ammunition (packed in 10-round charger clips) were temperature-conditioned at -65°F in accordance with Reference 1. Prior to test functioning, a drop test was conducted in the following manner:

- a. From a height of 5 feet, 25 fully-loaded magazines of each type were dropped twice onto a flat concrete surface (first on top forward and then top rearward area of the magazines).
- b. The remaining 25 test and control magazines were dropped (fully loaded) to impact on the base, in a base-forward and a base-rearward impact attitude.
- c. The magazines were visually inspected after each drop trial, and a record was made of any resultant damage.
- d. After completion of test firing, photographs were made of material drop-test damage to the magazines.

The firing exercise was conducted in accordance with Table I-I, and the cyclic rate of fire for all 20-round automatic bursts and malfunction data for all firing were recorded.

A supplementary drop test was conducted with 20 samples each of the test magazines used in the second FDT (type 1A) and this EDT (third)(type 1B). Each type was divided into groups of ten magazines and dropped in accordance with the procedures outlined above, except that the type 1A magazines were dropped onto concrete and 1B type onto 3/8-inch plywood.

2.3.4 Results

Data from the prefiring drop tests are given in Tables 2.3-1 and 2.3-11. Function performance data are tabulated in Table 2.3-111. Figures 2.3-1 through 2.3-3 show damage to the magazines caused by the 5-foot drop test. Cyclic rate of fire data are given in Table I-IV.

Table 2.3-1. Five-Foot Drop Durability of Third EDT Magazines; Low-Temoerature Test (-65°F)

			No. Mal	functions								No.
					Dro	p-Cause	d Defec	ets			Magazines	
Maga-								Ejected			Usable	
zine	Drop			Caused	Feed	t-Lip D	amage	Floor	No.	No.	Total	After
Type	Orientation	No.	Dropped ^a	Defects ^b	Right	Left	Both	Plate	Mags	Rds	Defects	Drop Test
Test (1B)	Base	1	25	2	4			14	17	21	35	d ₄
	Feed lips		25	1	8	2	9		24	34	43	
	Base	2	25	4	5	1		1	20	29	27	
	Feed lips		25	4	2	3	i		21	29	27	
Control	Base	1	25	6				16	3	6	19	e ₁
	Feed lips		25	1	4	4			24	29	32	
	Base	2	25	11				2	13	20	15	
	Feed lips		25	2	12	1	1		17	17	31	

^aA total of 50 magazines per type were drop-tested twice; 25 on the feed lips and 25 on the floor plate.

Table 2.3-II. Comparative ^a5-Foot Drop Durability of Second and Third EDT Magazines; Low-Temperature Test (-65°F)

				Without							
Test Magazine Types ^b	Drop			Drop- Caused	Feed-Lip Damage			Floor	Ejected No. No.		Total
	Orientation	No.	Dropped ^c	Defectsd	Right	Left	Both	Plate	Mags F	Rds	<u>Defects</u> ^e
1 A	Base	1	10	3	1			1	5	6	7
	Feed lips		10	0	5			1	10	15	16
	Base	2	10	1	2				5	6	7
	Feed lips		10	3			1		6	6	7
1B	Base	1	10	3					7	8	7
	Feed lips		10	0	3	4	3		10	12	20
	Base	2	10	6					4	4	4
	Feed lips		10	0					8	8	8

^aType 1A magazines were dropped onto a flat concrete surface and type 1B onto 3/8-inch plywood,

^bNo test and only two control magazines completed both drop trials without incidence of drop-caused defects.

^CNumber of rounds ejected from individual magazines are not included in these totals.

dBroken right feed lips caused release of ammunition.

^eTop spot weld at rear of magazine was broken, causing expansion of feed lips and release of ammunition.

bType 1A used in the second EDT and type 1B in the present (third) EDT.

^CA total of 20 magazines per type were used; ten were dropped twice on feed lips, the remainder on the base.

One type 1A and two type 1B magazines completed the drop tests without defects.

^eNumber of rounds ejected from individual magazines are not included in these totals.

Table 2.3-111. Function Performance Characteristics of Third EDT Magazines; Low-Temperature Test (-65^oF)

Total Malfunct	0 q	4-
r FBR	00	-0
No. of function y Type DF	0 0	ო –
No. of Malfunctions by Type FF-20 DF FBR	11	00
Tight Fits of Magazines in Weapon during ^a Insertion Removal	00	8 -
Tigh Fits of M in Weapo	00	e –
Load No.		- -
No. Mags Without Malfunct	13 11	17 20
Five Foot Drop Orienta- tion	Base Feed lips	Base Feed lips
No. Rds Fired	480 440	500 480
No. Mags Tested	24	25 2 4
Maga- zine Type	Test (1B)	Control

^aThese defects caused by bulging of themagazine body during drop testing. They did not contribute to magazine malfunctions. ^bOnly DF and FBR malfunctions were charged to the magazine operation. The FF-20 malfunctions were charged to inadequate magazine design.

Figure 2.3-1: Material Damage to Third EDT (Type 1B) Magazines Caused by Drop Test at -65°F onto Concrete Surface. Note Feed-Lip Breakage.

Figure 2.3-2: Material Damage to Third EDT (Type 1B) Magazines Caused by Drop Test at -65°F onto 3/8-Inch Plywood. Note Damage Similar to Figure 2.3-1.

Figure 2.3-3: Material Damage to Second EDT Magazines (Type 1A) Caused by Drop Test at 85° F onto Concrete Surface. Note Greatly Reduced Damage to Feed-Lip Area, when Compared with Type 13 Magazines.

2.3.5 Analysis

The change in drop test impact surface from 3/8-in plywood to concrete (necessary to conform to current test procedures) increased the severity of the material damage to both test and control magazines. However, based on the results of the supplementary drop test, it is apparent that there has been a definite degradation of material strength with the latest test magazine configuration (Figures 2.3-1 through 2.3-3).

Provided that material failure does not occur with the test magazine, its capability to resist permanent deformation, caused by drop impact, is better than the standard control magazine (see Figure 2.4-1 for control magazine deformation). Because of the present inability of the test magazine to avoid breakage of the feed lips, the test criterion has not been satisfied.

2.4 EXTREME HIGH TEMPERATURE TEST (+155°F)

2.4.1 Objective

The objective was to determine the relative material durability and functional reliability of the test and control magazines.

2.4.2 Criterion

The material durability and operational reliability of the test magazine must be equal to or suspass that of the control magazine.

2.4.3 Method

Prior to testing, each rifle was cleaned with PS 661-B solvent and lubricated with MIL-L-46000A semifluid oil. Maintenance on the weapons during firing was performed only if unsatisfactory weapon functioning, not associated with magazine performance, was evidenced.

Five weapons, 50 each new test and control magazines, and 10,000 rounds of M193 ball ammunition (packed in 10-round charger clips) were temperature-conditioned at +155°F in accordance with Reference 1. Prior to test functioning, a drop test was conducted in the following manner:

a. From a height of 5 feet, 25 fully-loaded magazines of each type were dropped twice (first on top forward and then top rearward area of the magazines) onto a flat concrete surface.

- b. The remaining 25 test and control magazines were dropped to impact on the base, in a base forward and base rearward impact attitude.
- c. The magazines were visually inspected after each drop trial, and a record was made of any resultant damage.

The firing exercise was conducted in accordance with Table I II and the cyclic rate of fire for all 20 round automatic bursts and malfunction data for all firing were recorded,

7.4 Results

Data relating to the 5-foot drop test and function firing performance are given in Tables 2.4-1 and 2.4-11. Figures 2.4-1 and 2.4-2 show the drop-test damage sustained by the control and test magazines. Permanent deformation of the control magazine feed lips and swelling of the magazine body, while severe, did not impede use in most instances and was repairable in those instances where malfunctions resulted. Test magazine damage was negligible.

Figure 2.4-1: Five-Foot Drop Test Damage to Control Magazines at +155°F. LEFT to RIGHT: Top Forward Portion of Right Feed-Lip Bent Inward; Three Magazines with Deformed Rear Portion of Feed-Lip; and One Magazine with Floor Plate Damage, Similar Results Occurred at -65°F.

Figure 2.4-2: Five-Foot Drop Test. Representative Damage to Test Magazines at +155°F. Siight Deformation of Magazine Body (Arrows) is the Normal Extent of Damage Occurring on These Magazines.

Table 2.4-1. Five Foot Drop Durability of Third EDT Magazines; High-Temperature Test (+155^oF)

	Total	Defects ^a	44	32	æ	26	26	45	0	25
Defects	Ejected Rounds	No. Rds	b126	72	45	53	12	53	7	15
	Ejectec	No. Mags	24	25	25	21	7	20	5	14
Drop Caused Defects	Floor	Plate	20	7	12	2	19	0	S	0
Drog	amage	Both	0	0	0	0	0	-	0	2
	Lip Da	ight Left Both	0	0	0	0	0	œ	0	7
	Feed.	Right	0	0	-	0	0	9	0	7
No. Mags	Drop	Caused Defects	0	0	0	0	0	0	0	0
	No. Mags	Dropped	25	25	25	25	25	25	25	25
		No.	•		7		-		7	
	Drop	Orientation	8.56	Feed lips	Base	Feed lips	Base	Feed lips	Важе	Feed lips
N So	zine	Type	Test (18)				Control			
									1	7

^aNumber of rounds ejected from individual magazines are not included in these totals, ^bSix rnajazines ejected a total of 93 rounds due to complete release of the floor plate from the body of the magazine.

Table 2.4-II. High-Temperature (+155°F) Function

Performance Data

No. of Malfunctions

				No. of M	alfunctions	
Magazine Type	Average Cyclic Rate,	APG	Weapo			
	rds/min	Weapon No.	FA	SA	В	Iotal
Test Control	863 854	11	4 0	4	b 10	18 2
Test Control	941 931	12	0 0	4	5 0	9 1
Test Control	914 900	13	2 0	5 1	8	c 15
Test Control	912 90 2	14	1 0	2 0	8 1	11 1
Test Control	924 922	15	5 0	3 0	7 1	15 c 1
Average Test Control	911 903	Total Test Controi	12 0	15 3	38 3	^d 68 ^e 6

^aFA = Fully automatic, SA = Semiautomatic, and B = Short automatic bursts.

^bThis malfunction was a first-round stub which can occur in any mode of fire.

^cThis malfunction was a bolt override of the round which damaged the cartridge case. It was caused by drop-test damage to the magazine feed lips. This damage was subsequently repaired and no further malfunctions occurred during the remaining four trials.

four trials.
Two magazines developed material failure which caused three malfunctions. The magazines could not be repaired and were withdrawn from test.

2.4.5 Analysis

Eighty-five per ceric of the malfunctions that occurred with the test magazines were attributable to design deficiencies (paragraph 2.1). With the exception of two instances of feed-lip breakage, the test magazine structure was not affected by the 5 foot drop test (Figure 2.4-2). Damage to the control magazines which adversely affect functioning performance is correctable (Table 2.4-II, footnote b). As a result of the design deficiency in the test magazine, the test criterion has not been satisfied; however, with exclusion of this problem, the test and control magazine performance is equal.

2.5 FUNCTION AND DURABILITY TEST

2.5.1 Objective

The objective was to determine the relative functional reliability and material durability of the test and control magazines.

2.5.2 Criterion

The material durability and operational reliability of the test magazine must be equal to or surpass that of the control magazine.

2.5.3 Method

Prior to testing, each rifle was cleaned with PS 661-B solvent and lubricated with MIL-L-46000A semifluid oil. Maintenance on the weapons and magazines during the firing exercise was performed only to the extent of ensuring proper mechanical operation.

The firing sequence was conducted in accordance with the schedule given in Table 1-111, and the malfunction and cyclic rate of fire data were recorded.

2.5.4 Results

Table 2.5-1 gives the function and durability test data. Appendix I contains the individual round data.

Table 2.5-L. Function and Durability Test Data

Туре	Load No.	No. Magazines Tested	Total No. Rás Fired	Avg Cyclin Rate. rds/min	No. Magazines with Maifunctions	Total No.
Cest	1 to 5	100	10000	831	2	2
	6 to 50	a 10	10000	842	0	O
	! to 50	•	20000	836	2	2
Control	1 to 5	100	10009	825	2	2
	6 to 50	a 10	10000	844	3	4
	1 to 50		20000	834	5	6

^aI on magazines selected from the original 100-magazine sample.

This was the first subtest which utilized the redesigned follower. An immediate improvement in function performance was evidenced; however, the new design induced a loading problem into the system. When the magazines were loaded by charger clips, the retangular cartridge dummy on the follower caused the first two rounds in the magazine to stack on the same side. This reduced the magazine capacity to 19 rounds and additionally would cause a double feed of the last two rounds from the magazine unless corrected prior to firing. Data pertaining to individual cyclic rates of fire are given in Tables I-VII through I-IX.

2.5.5 Analysis

Function performance of the test and control magazines was excellent; however, because the test magazine is capable of being incorrectly loaded when using charger clips, the test item cannot be considered equal to the control magazine.

2.6 DUST TEST (STATIC)

2.6.1 Objective

The objective was to determine the relative functional reliability of the test and control magazines in a dust environment.

2.6.2 Criterion

The material durability and operational reliability of the test magazine must be equal to or surpass that of the control magazine.

2.6.3 Method

Twenty magazines of each type were simultaneously conditioned in accordance with the procedures outlined in Reference 1, except that the weapons were not conditioned in the dust. The magazine array was established in conformity with Figure 1-2.

Five magazines per weak on were test fired, alternating the mode of fire as follows: burst, automatic (20 rounds), semiautomatic, burst, and semiautomatic. Maintenance was performed on the weapons after each 100 rounds fired.

2.6.4 Results

Functioning performance data are given in Table: 2.6-1 and 2.6-11. The malfunction rates per 100 rounds fired and the percentage of first-round malfunctions (FS1) respectively are as follows:

- a. Test magazines with round cartridge profile follower 4.0, 50.0%.
- b. Test magazines with rectangular cartridge profile follower 27.4, 10.7%.
- c. Control magazines 3.5, 64.3%.

These data indicate that a design problem exists with the test magazine; the follower fails to rise, even after repeated attempts to forcibly correct the problem by sharply impacting the magazine on the shooting bench. This failure is caused by excessive bearing surface of the magazine body (sides) contacting the follower and cartridges. The fine dust particles (140 mesh) cause seizure of the moving components.

The variation in functioning performance of both test and control magazines was caused by the magazine position within the dust box; the magazines closest to the dust intake received the greater concentration of the dust. The magazine array in the dust box (Figure I-2) was designed to cover dust distribution on an equal basis for each magazine type.

Table 2.6-1. Malfunction Data for Test Magazines Used in the Static Dust Test

		Total	ţ	ო	20	2	88	₹ ;	8	8	ଅ	8	4	20	4	ß	υħ	2	29	2	2	20	102	8
Fired	Before Function	Failure	* ~	က	Δ,	•	1	•	,	•	•	•	4	•	4	ស	Ωı	ı	•	•	•	•		
No. Rds	Before First	Malfunction	0	0	က	4	1		0	٠		91	64	ব	7	ო	0	19	0	•	0	0		
	Cyclic Rate of	Fire, rds/min		696 (17 rounds)					575 (12 rounds)					757 (14 rounds)					783 (20 rounds)					
		Total	ო	0		က	0	0	7	0	0	,-	വ	က	ĩ٠	7	4	-	-	0	-	7	28	œ
	s	FBR																					0	0
	No. of Malfunctions	DF																					0	0
	f Malf	BOB	-	-	•	-			 -			-	_	7	7		-	-				-	6	4
	No. o	FF	-	•	-	- 2							4	-	ო	7	7						16	0
		FS																					0	0
		FS1	-	-	-												-		-			-	بر س	4
	Magazine		321	323	323	324	325	326	327	328	329	330	331	332	333	334	335	336	337	338	339	340	ew followe	Total, Old follower
	APG	No.	-	•			ı	2					ო	•				9 ⁴					Total, N	Total, 0

^aMagazines used with this weapon had the original (old.) follower design of round cartridge profile and reduced side bearing surfaces.

^bNo occurrence.

Table 2.6-II. Malfunction Data for Control Magazines Used in the Static Dust Test

		Total	20	20	50	8	20	20	23	2	20	20	20	20	20	2		20	20	50	20	20	400	
No. Rds Fired	Before Function	Failure	a'		,	•	•	,	,		•		•	•		•	•	,	•	ı		•		
No	Before First	Malfunction	0	0	0		0	•	0	0		•	18	2	18	•	0	•	0	0	•	1		
	Cyclic Rate of	Fire, rds/min		677 (20 rounds)					roʻ					636 (17 rounds)					775 (20 rounds)			t		
		Total	-	_	-	0	7	0	-	-	0	0	-	7	_	0	_	0	-	-	0	0	14	
	Suc	FBR					-																-	
	functi	밁											-		_								7	
	No of Malfunctions	808																					0	
	No	FF																					0	
		FS												7									2	
		FS1	-	-	-		_			_							_		-	-			6	
	Magazine	No.	321	322	323	324	325	326	327	328	329	330	331	332	333	334	335	336	337	338	336	340		
	APG Weapon M	No.	-					2					ო					4					Total	

^aLost. ^bNo occurrence.

2.6.5 Analysis

Cessation of function of the test magazine with the redesigned follower prevents the test criterion from being satisfied. Use of the original follower design did eliminate the problem of function stoppage. Although premature release of the last round in the magazine did not occur, the malfunction rate of the test magazines was still twice that of the control magazine.

2.7 DUST TEST (DYNAMIC)

2.7.1 Objective

The objective was to determine the comparative function performance of the test and control magazines in relation to weapon performance when the system is fired during dust conditioning.

2.7.2 Criterion

The material durability and operational reliability of the test magazine must be equal to or surpass that of the control magazine.

2.7.3 Method

Three weapons were cleaned with PS 661-B solvent and lubricated with MIL-L-46000A semifluid oil prior to this test and after each magazine type tested. Each rifle was fired 140 rounds while being subjected to a continuous blast of dust in a specially contructed box. The 140-mesh silica flour dust was introduced into the dust box at a rate of 2 pounds per minute and circulated by a blower which was operated at a rate of 60 rpm. The weapons were fired, alternately in 20-round bursts, semiautomatic fire, and 3- to 5-round bursts with the first, fourth, and seventh magazines fired in 20-round bursts. The rate of firing was approximately one magazine every 20 seconds for a total test time duration of 2-½ minutes. The magazines were protected from the dust by use of plastic bags until ready to load into the weapon. Cyclic rates of fire and total firing time were recorded.

If the firings were accomplished without malfunctions which were not readily clearable, the weapons were cooled and the firing cycle was repeated for two more trials (420 rounds, total of three trials). Clean magazines (not maintained) were used.

The weapons were maintained and the above sequence was repeated with the other magazine type (three trials of 140 rounds each).

Two weapons and the test and control magazines were maintained and the testing (total of 420 rounds on each type magazine) was repeated with the protective covers removed from the magazines.

2.7.4 Results

Table 2.7-I gives the data for the dynamic dust test. With the exception of one trial with weapon No. 2 using the control magazine, both magazine types functioned reliably when provided with protective covering. Without the protective covering the test magazine is susceptible to function stoppage as previously detected during the static dust test. The control magazines functioned satisfactorily after first-round stripping was accomplished with the bolt closure assist device.

Table 2.7-1. Dynamic Dust Test Firing Data

	Total		00	00		2	0	0		0	0	0		4 9	ဖ	
nctions	FFR ³ FBR					•									_	
No. of Malfunctions	808-20															
	FS1 FF	bu				-								04	ഹ	
Total Firing	min.	Magazines with Protective Covering	3.6	2.1	2.7	2.1	5.0	5.1	2.1	2.2	. 6	2.1	2.1	3.6	3.0	3.7
Fire,	Third	Protecti	832	867	854	849	879	877	898	006	893	006	868	b 783	,)	
Cyclic Rates of Fire, rds/min, Trial	Second	ines with	806	849	827	783	845	865	831	853	897	861	870	778 775	, }	
Cyclic	First	Magaz	813		791		38 2		797		90		782	798 772	1	
Medation	No.		361 to 367	375 to 381		361 to 367	368 to 274	375 to 381		361 to 367	368 to 374	375 to 381		361 to 367 368 to 374	3/5 to 381	
140-Rd Trial	NO.		- ℃	9 M		_	7	က		-	7	ო		- 2 0	7)	
Wespoo	No.					-				2				7		
Madaire	Type		Test		Average	Control			Averag	Test			Average	Control		Average

^aPossibly caused by failure to lock bolt. ^bNo data recorded.

Table 2.7-1 (Cont'd)

	Tota	000		000			- O M		6 7	
No. of Malfunctions. Type	FF BOB-20 FFR FBR						C ₁ 1			
	FS1						-		9 7 7	
Total Firing Time,	e E	2.5 2.9	2.5	2.0 1.8 1.7	1.9		2.8 2.0 2.9	5.6	2.7 2.1 2.0	2.3
Fire,	Third	, , , , , , , , , , , , , , , , , , , ,		908 900 879	968		802 834		849 863 853	855
Cyclic Rates of Fire, rds/min. Trial	Second	 p o p	•	867 871 857	865	ering	808 816 302	803	758 842 834	118
Cyclic	First	َ م م م		891 794 825	837	tive Cov	810 746 753	770	842 792 791	808
Macazio	No.	361 to 367 368 to 374 375 to 381		361 to 357 368 to 374 375 to 381		without Protective Covering	361 to 367 368 to 374 375 to 381		361 to 367 368 to 374 375 to 381	
140-Rd Trial	No.	+ 0 €		- 0 6		Magazines v	- 76		- 0 €	
West Control	No.	ო		ო		Ma	-		(4	
M. Saszina	Type	Test	Average	Control	Average		Test	Average	Control	Average

^COnly four rounds fired prior to function failure of magazine.

2.7.5 Analysis

The test magazine requires less effort to strip the first round from a fully-loaded magazine than does the control magazine. (Note the difference in total number of FS1-type malfunctions.)

The test magazines must be equipped with dust covers to prevent possible function failure in a dusty environment (see Table 2.7-I phase 1 and Table 2.6-I for comparison).

Provided that protective covering is used on the magazines, the test criterion is satisfied; however if this covering is not present, then the test magazine is susceptible to an increase in malfunctions and possible function stoppage during firing.

2.8 SAND TEST

2.8.1 Objective

The objective was to determine the relative function performance of the test and control magazines after conditioning in a sand environment.

2.8.2 Criterion

The material durability and operational reliability of the test magazine must be equal to or surpass that of the control magazine.

2.8.3 Method

Four M16A1 rifles were cleaned with PS 661-B solvent and lubricated with MIL-L-46000A semifluid oil. Twenty magazines of each type were tested in the following manner:

- a. Each magazine was completely covered with clean, dry silica- core sand.
- b. The magazines were removed from the sand, wiped on the outside, inverted and shaken vigorously to remove any accumulation of sand from the interior, and then test functioned.

Five magazines per type per rifle were tested.

2.8.4 Results

Tables 2.8-1 and 2.8-11 give the results of the sand test. Figure 2.8-1 shows one of the FF malfunctions which occurred with the test magazines. The follower and last cartridge were securely held in position by several small granules of sand. A discussion of this condition and corrective action required is given in paragraph 2.1.

Table 2.8-1. Sand Test Data for Test Magazines

						No. Rd	s Fired
APG Weapon No. ^a	Magazine No.	No.	Malfunct FS1	ions by	Type BOB	Before First Malfunction	Before Function Stoppage
1	301			4	2	1	3
	302				1	4	4
	303	1		2		3	7
	304	•		_	1	1	1
	305			1	•	2	2
2	306			•	1	1	b.
_	307				i	1	٧.
	308				່ວ	2	•
	309				4	4	•
	310				1	1	-
3	311			2	1	1	
3	312			2	1	 	3
	313	1		3	1	!	1
	314	1		3	1	l 4	i
	315				l	1	1
4				1		2	2
4	316			2		1	-
	317			1	1	1	•
	318		1		1	0	
	319						-
	320				1	1	•
Total	20	2	1	16	15		

^aWeapons 2 and 4 were tested with the first design follower (radial cartridge dummy and reduced side surface bearing).

No occurrence.

Table 2.8-II. Sand Test Data for Control Magazines

			No. f	Rds Fired
APG Weapon No.	Magazine No. ^a	No. Malfunctions, by Type, DF	Before First Malfunction	Before Function Stoppage
1	301		b _.	
•	302	1	18	•
	303			•
	304			
	305		·	-
2	306			•
	307			•
	308		•	•
	309	1	18	•
	310			•
3	311	1	18	•
	312		•	•
	313		•	-
	314		-	•
	315		•	•
4	316		•	
	317		-	-
	318		•	•
	319		•	•
	320		•	•
Total	20	3		

 $^{^{\}text{a}}\text{T}$ wenty rounds in each magazine. $^{\text{b}}\text{No}$ occurrence.

Figure 2.8-1: Top View of Cartridge (Round 20) and figure Jammed in Test Magazine. Note the Granules of Sand Lodged between Side (Left Rear) of Cartridge Case and Magazine.

2.8.5 Analysis

Test magazine function stoppages prevent the test criterion from being satisfied.

2.9 MUD TEST

2.9.1 Objective

The objective was to determine the relative function performance of the test and control magazines after immersion in mud.

2.9.2 Criterion

The material durability and operational reliability of the test magazine must be equal to or surpass that of the control magazine.

2.9.3 Method

Four M16A1 rifles were cleaned with PS 661-B solvent and lubricated with MIL-L-46000A semifluid oil. Twenty magazines of each type were tested in the following manner:

- a. A magazine was immersed in the mud solution (prepared in accordance with Reference 1) and quickly retrieved.
- b. The mud was wiped from the magazine exterior, the magazine was inverted and vigorously shaken to expel any mud from the magazine interior, and then immediately test functioned in the weapon.

Five magazines per rifle per type were tested. Weapon maintenance was performed after each group of five magazines tested.

2.9.4 Results

Table 2.9-1 gives the results of the mud test.

Table 2.9-1. Mud Test Data for Test and Control Magazines

	No. Loaded	No. Magazines			Nc. M	agazine	e Maifu	nction	S
Magazine	Magazines	without			Ŧ	уре			
Туре	Tested	Malfunctions	FS1	FS	FF	DF	BOB	FBR	Total
Test	^a 20	8	0	0	6	0	12	0	18
Control	20	9	3	4	4	2	3	2	18

^aTwenty rounds each magazine.

2.9.5 Analysis

The test magazine malfunctions which occurred indicate that the same design problem observed in the sand and dust test (seizure of the follower and cartridges in the magazine) also is present in the mud test.

Although the test and control magazines did not perform reliably, the test magazine satisfies the test criterion.

2.10 WATER IMMERSION TEST

2.10.1 Objective

The objective was to determine the relative function performance of the test and control magazines after immersion and cleaning in water.

2.10.2 Criterion

The material durability and operational reliability of the test magazine must be equal to or surpass that of the control magazine.

2.10.3 Method

The magazines previously conditioned in the static dust test were used. Each magazine was disassembled and immersed in water for 1 minute. While immersed, the inside and outside of the magazine were cleaned with a soft bristle brush (bottle brush). The magazine was removed from the water, reassembled, loaded and test functioned in a clean, lubricated M16A1 rifle.

A total of 20 loaded magazines was tested in four rifles; five magazines per rifle.

2.10.4 Results

The results of this test are given in Table 2.10-I.

Table 2.10-I. Water Immersion Test Data for Test and Control Magazines

AFG		Test Ma	gazines	Control N	fagazines .
Weapon	Magazine No. ^a	Cyclic Rate of Fire, rds/min	Malfunction, BOB	Cyclic Rate of Fire, rds/min	Malfunction, BOB
1	301 302 303 304	840		784	
2	305 306 307 308 309	859	1	794	
3	310 311 312 313 314	831		897	
4	315 316 317 318 319 321	849		889	
Total			1		0

^aThe magazines previously used in the static dust test were reused in this test. The magazines were cleaned in water during conduct of the immersion test. Each magazine number denotes both a test and control magazine. Twenty rounds were loaded in each magazine.

2.10.5 Analysis

The magazines are not adversely affected by immersion in water; therefore, the test criterion has been satisfied. Additionally, both magazine types are readily cleansed with water.

2.11 SOLVENTS AND LUBRICANTS COMPATIBILITY TEST

2.11.1 Objective

The objective was to determine the compatibility of the test magazines with various chemical compounds used as cleaners, lubricants, and insecticides.

2.11.1 Criterion

The durability and functional operation of the test magazines must not be degraded by reaction of the various chemical compounds to the test magazine material.

2.11.3 Method

Forty unloaded test magazines, five per fluid type (three new magazines and two used in previous tests), were immersed for 10 minutes in the following fluids: bore cleaner (MIL-L-372B), gasoline, kerosene, diesel fuel, dry cleaning solvent (PS 661-B), VV-L-800 oil, MIL-L-14167 oil, and MIL-L-46000A semifluid oil. All magazines were allowed to drain for 24 hours at ambient range temperature, then loaded with 20 cartridges and test functioned. Insect repellant (FSN 6840-558-0918) was applied to five loaded magazines by coating the hands with the repellant and then immediately grasping the magazines. A check was made to insure that the feed-lip area was contacted. Twenty-four hours elapsed before test firing.

All magazines were inspected during the various stages of this test. The extent of functional performance degradation and reaction between the chemicals and test material, if experienced was determined.

2.11.4 Results

The results of this test are given in Table 2.11-1.

Visual inspection of the test magazines during conditioning and after test firing revealed no damage to the material caused by reaction to the solvents, lubricants, or insecticide.

Table 2.11 I. Solvents and Lubricants Compatibility Test Data

Test Condition	No. of Malfunctions, by Type ^a	Round No. of Malfunction	Weapon No.
Bore cleaner	b		1
Gasoline	1-BO3	6	2
Kerosene	•		3
Diesel fuel	•		4
PS 661-B solvent	1-FF	4	1
VV-L-800 oil	-		2
MIL-L-14107 oil	-		3
MIL-L-46000A semifluid oil	•		4
Insect repellant	-		1

 $^{^{\}rm a}_{_{\rm h}}{\rm Five}$ 20-round magazines were fired in each test.

No occurrence.

2.11.5 Analysis

The test magazines satisfied the test criterion.

2.12 DISPLACEMENT - TIME STUDY

2.12.1 Objective

The objective was to measure the response characteristics of the cartridge follower in the test magazines during automatic fire, and to compare these measurements with similar measurements for the standard magazine.

2.12.2 Criteria

Criteria are as follows:

- a. No more than 10 milliseconds shall be required for the cartridge follower to position a cartridge during automatic fire.
- b. Other characteristics of the test magazine shall be judged to be equal to or surpass that of similar characteristics in the standard magazine,

2.12.3 Method

An M16A1 rifle, No. 1096779, was modified by cutting two vertical viewing ports through the left wall of the magazine well of the lower receiver. In order not to reduce the strength and rigidity of the magazine well, the ports did not extend through the lower rolled edge of the well. The ports were spaced approximately 1.75 inches from one another and vertically in line with each end of the cartridge follower within the magazine. Matching viewing ports were then cut through the left side of each of the magazines employed in the test except that only one port was used on any single plastic magazine in order not to unduly weaken the plastic magazine shell.

Small, highly polished, cylindrical rods were then cemented at each end of the cartridge follower. Reflected light from the rods provided traces which were recorded by the displacement - time camera and permitted accurate measurements to be made of displacement versus time for each end of the follower as the follower was elevated in the magazine during a 20-round burst. However, because of camera lens limitations, it was not possible to record both ends of the follower simultaneously with the camera positioned to obtain maximum expansion of the follower trace. As a result, separate records were made to obtain front and rear follower displacement.

In addition to the vertical viewing ports which were cut in the magazine well, a horizontal port was also cut in the upper receiver through the wall opposite the bolt carrier. A small rigid pin was then installed in the carrier which acted as a trigger by contacting a switch mounted on, and projecting downward from, the rifle carrying handle. The switch fired a high-intensity strobe light which imprinted a fine line on the displacement - time records at a predetermined point in the carrier cycle for each round fired. For this test, the strobe index line was set to vertically intersect the cartridge follower trace on the record at the point at which the bolt face contacted each round as the burst was fired.

Three records each were then obtained with a standard magazine, with the originally received plastic magazine, and with a plastic magazine with a modified follower (rectangular profile cartridge configuration). The initial three records for each type magazine were obtained to show traces of the rear of the cartridge follower. The test was then repeated to obtain similar traces for the front of the cartridge follower.

2,12,4 Results

Representative positions of several displacement - time records are shown in Figure 2.12-1 and 2.12-2 and measurements obtained from the displacement - time records are given in Table 2.12-1.

Figure 2.12-1 illustrates the beginning and end of several automatic bursts which were fired with a standard magazine and with the original plastic magazine. The letters F and R in parenthesis indicate whether the trace is for the front (F) or for the rear (R) of the follower. The numbers on each trace identify the round sumber and the arrows leading from each number indicate the point at which the follower attained full upward positioning of the cartridge.

The letter X identifies a critical area of follower motion on the records and the arrow leading from each X shows where this area of displacement occurred. The straight vertical lines on the records, labeled BF, are strobe light index lines and indicate, at the point where they intersect the trace of the follower, that the bolt face was just contacting the next cartridge to be stripped from the magazine.

Representative traces for the plastic magazine with modified follower are shown in Figure 2.12.2 and the identifying symbols are the same as in Figure 2.12-1.

By comparing traces on the left with those on the right in the two figures, it can be seen that a very pronounced downward deflection of the follower occasionally occurs as the bolt strips a round from the magazine. This characteristic is most noticeable on the traces obtained with the standard magazine, although this characteristic is not necessarily objectionable if the follower recovers quickly and if the follower is deflected downward without fore and aft tipping.

Figures 2.12-1 and 2.12-2 show that the downward deflection is overcome quickly and, in most instances, the follower is deflected downward without tipping. The degree of tipping can be estimated by comparing the trace on the left (front of the follower) with the trace on the right (rear of the follower). Note, for example how nearly identical the bottom left and bottom right traces are for initially-fired rounds in the standard magazine in Figure 2.12-1, but that pronounced tipping occurs as final rounds (18, 19, and 20) are stripped from the standard magazine and, as the magazine empties, the front of the follower remains stable but the rear of the follower is deflected sharply downward during each cycle.

This characteristic has been previously reported in Reference 5 where it has been cited as at least partially responsible for certain feeding failures encountered with the M16A1 rifle. At best it is an undesirable characteristic and, in comparison to the standard magazine, was not nearly as pronounced with either of the test plastic magazines.

The topmost trace on the right in Figure 2.12-1, however, shows a different and even more undesirable characteristic which was common to the originally received plastic magazine. Note in this trace that the follower has fully elevated to the empty-magazine position just prior to the bolt face reaching the 20th and final cartridge to be stripped. This resulted in the final round escaping from under the feed lip and becoming loose on top of the magazine. This failure occurred in 5 of the 6 displacement - time trials with the original plastic magazine.

Figure 2.12-2 shows that the modified plastic magazine tends to overcome both of the undesirable characteristics of follower tipping and cartridge retention and the data in Table 2.12-1 show that the modified plastic magazine also met the criteria of not exceeding a 10-millisecond response tine as did also the standard and original plastic magazines.

Figure 2.12-1: Portions of Displacement - Time Records Showing Motion of the Cartisdae Follower or the Standard Magazine and in the Text, Double Traces on the Two Cipper Left Records Are Trace Reflections of a Cartridge on Top of the Follower.

Figure 2.12-2. Portions of Displacement - Time Records Showing Motion of the Cartridge Follower in the Test Plastic (Modified) Magazine, Explanation Is Contained in the Text. Double Traces on the Two Records at Left Are Trace Refections of a Cartridge on Top of the Follower (Upper Record) and of a Magazine Spring Coil Under the Follower (Lower Record).

Table 2.12-I. Cartridge Follower Measurements Obtained from Displacement Time Records

Record No.	Round No.	Cycle Time, ms ^a	Follower Response Time, ms ^b	Cyclic Margin, ms ^c	Follower Motion at Bolt Contact ^d	Follower Motion after Bolt Contact ^d	Follower Displacement, in, e
Plast ⁱ n m	agazine, r	modified	follower, me	asurements	taken at rear	of follower.	
6	2	78	8	10	U	S	
	3	76	7	10	S	D	0.02
	11	72	7	10	S	S	-
	12	73	7	11	S	S	
	19	73	5	9	S	S	•
	20	72	7	8	S	S	
7	2	77	9	10	U	S	
	3	74	7	9	U	D	.02
	11	74	6	10	S	S	-
	12	77	9	13	S	S	•
	19	74	9	9	S	S	-
	20	73	11	9	S	S	-
8	2	80	10	10	S	S	-
	3	75	10	9	S	D	.02
	11	77	8	12	S	S	-
	12	79	7	12	S	S	-
	19	74	9	9	S	S S	
	20	74	8	10	S	S	-
Avg			8.0	10.0			.02
Plastic m	agazine,	riginal f	ollower, mea	surements t	aken at rear o	of follower.	
9	2	76	7	9	S	S	-
	3	74	7	9	U	D	0.02
	11	72	6	10	S	D	.03
	12	73	6	10	S	S	-
	19	74	7	7	S	D	.06
	^f 20	-	5	7	•	-	

See footnotes page 55.

Table 2.12-1 (Cont'd)

Record No.	Round No.	Cycle Time, ms ^a	Follower Response Time, ms ^b	Cyclic Margin, ms ^C	Follower Motion at Bolt Contact ^d	Follower Motion after Bolt Contact ^d	Follower Displacement, in. e
10	2	74	6	10	S	S	
	3	74	9	9	Ũ	D	0.02
	11	76	6	12	S	D	.03
	12	73	6	11	S	S	
	18	71	10	8	S	S	_
	19	69	5	5	S	D	.06
	920	70	5	13	-	-	•
11	2	81	9	10	S	S	
	3	76	7	9	S	D	.02
	11	74	6	10	S	D	.02
	12	76	6	12	S	D	.02
	19	76	7	7	S	D	.05
	20	72	6	12	S	D	.04
Avg			6.6	9.5			.03
Standard	magazine	e, measur	ements taker	n at rear of	follower.		
12	2	78	h _{NR}	10	S	D	0.05
	3	73	9	8	S	D	.05
	11	75	7	11	S	D	.06
	12	74	7	12	S	D	.05
	19	75	10	9	S	D	.11
	20	75	10	8	S	D	.06
13	2	79	^h NR	10	S	D	.05
	3	75	9	9	S	D	.04
	11	75	8	10	S	D	.05
	12	76	7	11	S	D	.04
	19	75	11	7	S	D	.10
	20	71	10	7	D	D	.06

See footnotes page 55.

Table 2.12 I (Cont'd)

Record No.	Roand No.	Cycle Time, ms ^a	Follower Response Time, ms ^b	Cyclic Margin, ms ^c	Follower Motion at Bolt Contact ^d	Follower Motion after Bolt Contact ^d	Follower Displacement, in. ^e			
14	2	3 2	^h NR	12	S	D	.05			
	3	77	9	11	S	D	.05			
	11	75	9	12	S S S S	D	.03			
	12	79	10	8	S	D	. 06			
	19	73	11	6		D	.10			
	20	76	12	8	S	D	.06			
Avg			9.3	9.4			.06			
Plastic m	Plastic magazine, modified follower, measurements taken at front of follower.									
125	2	76	9	8	S	S				
	3	72	9	6	S	D	0.03			
	11	72	8	10	S S	D	.05			
	12	70	10	11	S	D	.04			
	î8	70	7	12	S	S				
	19	69	6	12	S	D	.04			
ⁱ 26	2	79	11	9	S	S				
	3	75	12	8	S	D	.03			
	11	69	7	8	S	D	.05			
	12	70	8	9	S	G	.04			
	17	70	6	12	D	D	.03			
	18	68	8	12	D	D	.04			
ⁱ 27	2	82	8	11	S	S				
	3	77	9	11	S	D	.03			
	11	75	8	12	S S	D	.04			
	12	72	8	10	IJ	D	.04			
	18	71	5	13	S S	S				
	19	73	5	14	S	D	.04			
Avg			8.0	10.4			.04			

See footnotes race 55.

Table 2.121 (Cont'd)

Record No.	Round No.	Cycle Time, ms ^d	Follower Response Time, ms ^b	Cyclic Margin, ms ^c	Follower Motion at Bolt Contact ^d	Follower Motion after Bolt Contact ^d	Follower Displacement, in,e_
Plastic ma	gazine, o	riginal fo	llower, meas	arements ta	aken at front	ot follo <mark>wer</mark> .	
21	2 3 11 12 18	90 85 77 76 75	8 7 7 7 8	14 13 13 12 15	S S S S	S D D S S	0.04 .04
	^f 19	77	5	16	S	D	.03
23	2 3 11 12 18 f 19	93 88 75 70 71 71	8 7 10 10 5 7	15 14 13 10 13 14	S S S S S S	S D D S D	.04 .04 .02
24	2 3 11 12 18 f 19	90 90 75 75 72 72	8 7 8 7 5 7	14 14 13 12 14 14	s s s s	S D D S S D	.04 .04
Avg Standard	l magazin	e, measu	7.3 rements take	13.5 n at front o	of follower.		.04
ⁱ 16	2 3 11 12 18 19	91 80 83 84 78 84	9 9 8 8 6 6	15 10 12 12 15 17	\$ \$ \$ \$ \$ \$	S D D S S	0.05 .04 .04

Becord No.	Round No.	Cycle Time, ms ^d	Follower Response Time, ms ^b	Cyclic Margin, ms ^C	Follower Motion at Bolt Contact ^d	Follower Motion after Bolt Contact ^d	Follower Displacement, in <u>'</u> "
¹ 17	2	86	9	11	S	D	0.05
	3	79	11	8	S	D	.05
	11	77	7	8	S	D	.04
	12	76	9	9	S	D	.04
	18	74	5	14	S	S	
	19	74	5	13	S	S	
ⁱ 20	2	89	10	13	S	D	.05
	3	78	8	8	D	D	.04
	11	74	6	8	D	D	.05
	12	75	8	11	D	D	.04
	18	7 9	7	16	S	S	
	19	80	6	16	S	S	-
Avg			7.6	12.0			.04

^aThe time in milliseconds from the firing of the previous round to the firing of the round listed in round No. column.

^bThe time for the follower (front or rear) to fully elevate a cartridge after the bolt has cleared the magazine in recoil.

^CThe time between initial full positioning of the cartridge to be fed next from the magazine and the arrival of the bolt in counterrecoil to strip the cartridge.

dThe letters U, D, and S indicate the motion of the follower just as the bolt first engages the cartridge to be stripped and in the next column, immediately after stripping; U=follower moving upward, D= follower moving downward, S=follower is stable or relatively stable (some minor movement detectable).

^eThis measurement shows how far the follower is deflected downward as a cartridge is stripped from the magazine.

^fThe 20th round was not maintained in position in the magazine and became loose on top of the magazine approximately 4 milliseconds before the bolt was in position to strip the round. The gun jammed and did not fire the final round. The sum and as in flabour but the round was successfully fed and fired.

hNR = Not recorded on displacement - time record.

Motion of the follower was not visible for the 20th and occasionally the 19th round due to restrictions imposed in the cutaway viewing port.

Assurance

The displacement time records show that the modified plants magazine, it must be a "clean" environment, should perform equal to and probably better than the standard magazine. However, other subtests results should be consulted for performance during adverse conditions, for durability, and for handling and leading characteristics.

ATAM - TART DATA

* * * * * * *

This appendix contains the following test data:

Appendix		Peference t	o Section 2
Page No.	Description of Content	Par. No.	Page No.
1-2	Magazine dimensional measurements.	2.2	9
1-38	Firing sequence for -65°F.	2.3	20
I - 39	Firing sequence for +155°F.	2.4	25
1-40	Malfunction and nonfiring defects data for +155°F.	2.4	27
I - 41	Cyclic rate of fire data for +155°F.	2	28
I - 44	Firing sequence for Part I (five load- ings) of function and durability test.	2,5	30
1-45	Firing sequence for Part II (50 loadings) of function and durability test.	2.5	30
I - 46	Cyclic rate of fire data for function and durability test.	2,5	30
I-49	Malfunction data for function and durability test.	2.5	30
I-50	Magazine array used in the static dust test.	2.6	31
1-51	Malfunction data for mud test.	2.9	43

Magazine Dimensional Measurements

Water / Magazine, Body

D D

H (Min a Max)

C Cl

Ĵ

3

Note: Number 1 beside the letter denotes that the measurement was obtained at the bottom of the magazine.

Meter - Magazine, Body

1-3 Best Available Con

(Top View of Follower)

B

7_4

2,56-An RIFIE

DWG.No. D4-1042-3 SH 141

12 3.1	2000	
	. 34015	-
	. 270 - 015	
•	. 3,0015	
٤.	. 590 315	
•	F.010	ŧ
· · ·	.730 7.010	
	.700010	
<i>•</i>	.700 7.510	
=	1.235 +.010	"
<i>=</i>	2.395010	
G :	2.540015	
<i>H</i>	.445 +.015	
· ·	1.113006	and the second of the second o
K	1.364 To 1.380	(computed)
~	1396 TO 1.412	

* Skeknes His 1 w12

Sest Available Copy

PRODUCTIONS FOR PRINTER MAGAZINES

Dimensien	-1112		
\sim	2 265 - 010		
\mathcal{B}	2, 225 to 2.195		
C	. 110 + .010		
D	.680 ± .005		
£	.310010		
F	.395 to .445	(computed)	
G	.680 ± .005	·	

SPRING, DWG. No. C 4-1042-8

SPRING Length (FREE) 7.84 - .20

4 Shell Pil

Beference Burton 1

Plastic

(Statementon)

Mag.								
<u>\$0.</u>	<u> </u>	<u>u</u>	<u>5</u>	<u>Bl</u>	≘	<u>e</u>	5	<u> </u>
ó	.007	.375	وفاد	.563	.na	.727	.713	.72.
13	. 30-)	. 2 75	.JN	. 302	.712	.72)	.716	7.
15	. ŝ c7	.572	oc7	. 9 96 .	.Tla	.70	.713	.Te.
<i>z-</i>	. àc7	.575	.309	.62	.711	.725	.71.3	.722
25	, 385°	.305	.70)	. ઉંદી	.Tio	.70,	.7.6	.72
30	.336	.572	.30)	.002	.77	.724	.717	.72
35	.386	.372	.309	.861	.759	.725	.712	.72
**	.087	.372	.009	. 360.	ن در.	.725	.714	, Te.
45	. ŝ87	.873	ĴĠĊ.	.000	.71.	.To	.71.3	772
50	.387	.373	.390	.582	.711	.725	714	.72 .72 .72
55	.387	.374	.669	.889	.711	.725	.71	722
5 û	.ãõ	.373	.690	.861 .862	.712	.725	71.2	.720
65	.883	.273	.ãô)	.263	.715	.725	.727	. 73
75	.387	.374	.čo5	. ô 62	.711	.725	.71.5	.72
75	. 866	.572	.009	.862	.712	.725	.723	.7i.:
эù	. 366	.873	.009	.862	712	.725	.ni	.722
ŝŝ	.886	.373	. 309	.881	.710	.725	.714	.722
3 €	. 386	.374	.630	362	.712	.725	716	.722
Ð	.687	.374	, 50)	.879	712	.725	. 717	.722
150	.887	.374	.390	.66c	.nı	.725	.713	722

Reference Skatch 1

Aluminum

(Dimension)

Mag.								_
No.	Ā	VI	B	<u> 11 </u>	<u>c</u>	<u> </u>	D	$\overline{\mathbf{m}}$
5	.884	.887	.884	.884	.796	.804	.800	.805
10	804	.883	.885	.885	.803	.805	.801	.800
15	.387	.888	.883	.887	.803	.805	.805	.806
20	.883	.884	.884	.88 8	.800	.806	.804 .803	.804
25	. 884	.885	.882	.884	.799	.803	.803	.805
30	.887	.883	.884	.882	.800	.803	.805	.803
35	.870	.888 .885 .885 .885 .883 .883 .884 .881 .887 .885 .885 .885	. 884	.885	.797	,802	.805 .794	.802
40	.882	.883	.882	.882 .886	.796 .800 .800 .801 .800	.802	.801	.803
45	.881	.883	.883	.886	.800	.802	.799	.801
50	.883	.884	.885	.885	.800	.804	.798	.798
55	. 885	.884	.884	.883	.801	.803	.803	.804
60	.882	.881	.882	.887	.80 0	.804	.802	.800
65	. 884	.887	.886	. 885	.803	.802	.800	.805
70	.886	.885	.886	. 893 . 885	.801 .800	.811	.805	.803
75	.878	.884	.882	.885	.800	.807	.790	.804
80	.890	.885	. 884	.883	.7 90	.800	.805	.801
85	.882	.881	.881	.886 .886	.799	.806	.800 .805	.800
90	.886	. 878	.882	.886	.797	.805	.805	.797
95	.883	. 884	.882	.885	.798	.800	.800	.802
100	.885	. 884 . 885	.885	.886	.799	.805	.805	.802

Reference Shetch 1 & 2

Plastic

(Dimension)

Mag.							·	
No.	<u>K</u>	<u>F</u>	<u>G</u>	(Min)	H (Max)	<u>J</u>	X	L
5	2,261	2.393	2.537	.451	.453	1,106	1.366	1,400
10	2.286	2.395	2.535	.450	.459	1.109	1,3 6 6	1,403
15	2.279	2.390	2,538	.450	.456	1.107	1.367	1.400
20	2,280	2.390	2.535	.452	,460	1,109	1.375	1.402
25	2.279	2.389	2.537	449	.455	1.107	1.367	1.402
30	2,283	2.392	2.537	.440	.450	1,108	1.368	1.400
35	2,281	2.390	2.537	· hpo	.451	1.108	1,366	1.402
40	2.281	2,390	2.542	, le le le	.451	1.107	1.367	1.402
45	2,283	2.392	2.537	· pp p	.454	1,109	1.370	1.402
50	2.282	2.392	2.536	.441	.45k	1.108	1.367	1.402
55	2.281	2.391	2.535	· frit	.459	1.107	1.367	1.403
60	2.28L	2.392	2.537	.451	.459	1.198	1.368	1.405
65	2, 283	2.391	2.538	.447	.454	1.107	1.367	1.400
70	2.284	2.393	2.538	.447	456 و45	1,108	1,368	1.401
75	2 .2 86	2.393	2.535	.448	.455	1.108	1.368	1.400
80	2.281	2.390	2.535	. 448	.458	1.108	1.370	1.403
85	2 .2 80	2.389	2. 536	.448	.458	1.109	1.369	1.405
90	2.281	2.391	2.536	844	.458	1.108	1.366	1.400
95	2.281	2.391	2.535	.1.8	.453	1.108	1.368	1.400
100	2.281	2.531	2.540	. 142	.457	1.106	1.367	1,402

Reference Easteh 1 & 2

Alumian

Heg. No.	R	<u>F</u>	<u>G</u>	(Min) H	(Max)	Ţ	K	<u>r</u>
5	2,300	2,375	2.531	.451	,452	1,100	1.352	1.390
10	2,300	2.376	2.533	.452	.455	1.101	1.357	1.405
رً1	2,298	2.369	2,528	.456	.460	1.103	1.349	1.395
20	2.296	2.376	2.52 8	.450	.458	1.103	1.358	1.408
25	2,295	2.376	2.530	.450	.459	1.102	1.358	1.408
30	2.295	2.376	2.529	.457	.462	1.102	1.355	1.404
35	2.294	2.378	2.531	.449	.455	1.101	1.359	1.408
40	2.297	2.371	2.526	.450	.458	1.100	1.351	1.398
45	2.290	2 . 369	2,526	.448	.455	1.100	1.345	1.406
50	2,299	2.379	2.530	.448	.455	1.10°	1.358	1.405
55	2.293	2.373	2.526	.450	.454	1,100	1.353	1.403
60	2.295	2.379	2.5 2 9	.452	.459	1.105	1.356	1.405
65	2.303	2.373	2.529	.452	.454	1,101	1.357	1.402
70	2.298	2.379	2.533	.448	.456	1.108	1.357	1.405
75	2,292	2,376	2.521	.454	.464	1.102	1.356	1.405
80	2.300	2.381	2.526	.448	.455	1.104	1.355	1.400
85	2.294	2.376	2.527	.450	.459	1,100	1.354	1.406
90	2.300	2.373	2.528	.454	.464	1.102	1.355	1.407
95	2.298	2.381	2,521	.We	*##8	1.105	1.357	1.400
100	2,295	2.371	2,523	.452	. 459	1.100	1.253	1.398

Reference Fatch 3

Plastic

Mag.			_	_	_	_		Spring Length
No.	<u>A</u>	B	<u>c</u>	D	<u>E</u>	<u>F</u>	<u>G</u> _	(Pree)
5	2.363	2.320	.105	.677	. 307	. 385	. 691	8.075
10	2.370	2.323	.106	.677	. 307	. 372	.692	8.063
15	2.367	2.319	.106	.677	.309	. 378	. 693	8 . 006
20	2.368	2.321	.106	. 678	.307	. 376	. 693	8 .13 0
25	2.367	2.321	.106	.677	.308	. 381.	, 693	ú.054
30	2.367	2.322	.105	. 678	. 308	. 383	.i33	8.055
35	2.368	2.322	.105	.677	. 308	. 378	.692	8.020
40	2.368	2.323	.107	.677	. 307	. 383	.692	7.915
45	2.369	2.323	.105	.677	. 307	. 399	. 6 93	8.053
50	2.368	2.321	.105	.677	. 307	.392	. 693	8 .02 0
55	2,370	2.322	.104	.677	. 307	. 381	.691	8.106
6 0	2.369	2.321	.105	.677	. 307	.380	.692	8.225
65	2.368	2.323	.107	.677	.305	. 380	. 691	8.154
70	2.369	2.321	.104	.677	.305	. 366	.692	8.059
75	2.365	2, 322	.105	.678	.307	. 385	.692	8.005
δό	2, 368	2, 322	.106	.676	.306	• 3 ⊊	.692	8.005
85	2, 369	2, 321	.107	.676	.306	.383	. 691	8.0 3 8
90	2.368	2.322	.104	.677	.305	.373	.691	8.045
95	2, 369	2.321	.104	.677	.305	. 380	.693	8.154
100	2.368	2, 321	.107	.677	.305	.387	.692	8.053

Inference Shrich)

Aluminum

Nag. Bo,	<u> </u>	<u>B</u>	Ç	<u>D</u>	E	7	<u> </u>	Spring Lgth. (Free)
5	2. 362	2.275	.107	.686	.3 23	.292	.744	7.798
10	2.359	2.280	.105	.682	. 323	.291	.744	7.817
15	2.358	2.268	.110	.682	.316	.285	.745	7.657
20	2.358	2.272	.108	.682	. 321	. 300	.741	7.726
25	2.361	2.270	.108	. 684	. 323	.291	.737	7.695
30	2.361	2.277	.107	. 688	.323	.293	.744	7.667
35	2.361	2,270	.111	.688 .679 .684 .685	. 322	.293	.759	7.765
40	2.358	2,275	.108	.679	.315	.290	.749	7.675
45	2.360	2.274	.108	. 684	.323	.295	.747	7.730
50	2.358	2.274	.108	. 685	.319	.292	.746	7.749
55	2.362	2.276	.108	. 688	.323	.293	.746	7.829
50	2.359	2,275	.107	.687	.318	.295	.754	7.727
65	2.360	2.276	.107	.685	.321	.291	.742	7.754
70	2.358	2.273	.102	.683	. 320	.291	.747	7.647
75	2.359	2.27	.106	.682	.319	.291	-739	7.704
80	2.359	2.268	.109	.633	.315	.290	.751	7.675
85	2.359	2.276	.110	. 686	.316	.290	.746	7.660
نُو	2.359	2.272	.108	. <i>6</i> 86	. 322	.292	.744	7.678
95	2.358	2.274	.iu	.679	.313	.293	.743	7.636
100	2.359	2.277	.105	.683	. 322	.290	.747	7.585

Variations in the dimensions of 20 plastic and 20 aluminum magazines were as follows:

Reference Sketch 1

Plastic

(Dimension)

.885 to .889	.872 to .875	.887 to .891	.879 to .888		.725 to .726	D .711 to .717	.718 to .724
			Alu	inva			
.870 to .890	.878 to .888	.881 to .886	.882 to .893	.796 to .803	.800 to .811	.790 to .805	.797 to .806

Reference Sketch 1 & 2

Plastic

K	P	<u> </u>	H	J	K	L
2.279	2.389	2,535	.440	1.106	1.366	1.400
to	to	to	to	to	to	to
2.286	2.395	2,542	.460	1.109	1.370	1.405
			<u>Al</u>	rina.		
2.290	2.369	2.521	.442	1.100	1.345	1.390
to	to	to	to	to	to	to
2.303	2.381	2.533	.464	1.108	1.359	1.408

Reference Martch 3

Mastic

4			
(M	 -4	on i	1
ш		ОП.	

<u> </u>	В	c	<u>D</u>	<u> </u>	7	C	Spring Length (Free)
2.363	2.319	.104	.676	.305	.366	.691	7.915
to	to	to	tu	to	to	to	to
2.370	2.323	.107	.678	.308	.399	.693	8.225
			<u> </u>	MT MARK			
2.358	2.268	.102	.679	.313	.285	.739	7.585
to	to	to	to	to	to	to	to
2.362	2.280	.111	.688	.323	.300	.759	7.829

Variation in the dimensions of 79 plastic and 80 aluminus magazines was as follows:

Reference Sketch 1

Plastic

<u> </u>	В	<u>c</u>	D
.888 to .893	.389 to .892	.704 to .717	.71.0 to .71.9
	Alunda		
.877 to .639	.880 to .890	.800 to .808	.800 to

The following measurements are for a sample of ten test and control magazines used in the function and durability test.

The maximum variation from drawing specifications before firing was as follows:

Follower, Plastic, Dwg. C4-1042-5

Specific	d Dimension	Variation
2.265	ac	·. 901
		Magazine, Plastic, Dwg. D4-1042-3
.890	015	003
.700	+.010	+.016
2,265	+.010	006
.445	+.015	005
1.118	006	006

Spring, Steel, Dag. Ch-1042-8

Specified	Diseasio	<u> </u>	Variation
7.84	-,20		+.235
		Pollower, Aluminum, Deg. 624	94
2,360	005		+.002
2.257 to	2,272		300.+
. 680	+,005		+.003
. 300	₹,005		015
.750	₹.005		004
		Spring, Steel, Deg. 62187	
7.760	<u>+.100</u>		003
		Magazine, Aluminum, Deg. 6192	r
.443	+.015		+.004
1.101 to	1.110		001
1.357	+.003		005
1.396 to	T.412		~,006
.885	+,005		010
.798 to	.812		004

The maximum change in dimensions after firing 1000 rounds was as follows:

Follower, Plastic

Dimensio	<u>n</u>	Change
2.265	01 0	e,003
.680	+.005	004
.138	∓.a. o	~.002
. 340	₹,005	-,002
	Spring, Steel	
7.84	-,2 0	132

Mension, Martie

Dissession

Change

	-		~
.390	01 5	003	
.700	+.010	002	
2,285	÷.alo	+,004	
2,395	010	-, 012	
2.5 1 0	025	002	
.445	+.015	+.007	
1.118	006	+.002	
	io 1,380	+,002	
1.396 t	o 1.412	+,005	
		Follower, Aluminum	
2.360	-,005	+,005	
	o 2.272	±.006	
.110	Bof.	₹.005	
. 68 0	+.005	008	
. 320	₹.0 05	+.005	
. 300	∓. 005	+.001.	
.750	₹.005	7.006	
		Spring, Steel	
7.760	<u>+</u> .100	-,418	
		Magazine, Aluzimon	
2.268 N	đa –	+.001	
2.380 1	lef.	=,002	
	of.	003	
.443	+.015	+.008	
1.101 to		002	
1.357	+.003	003	
1.396 to		+.010	
.885	<u>+.</u> 005	<u>+</u> .con	
.798 to	702	<u>+</u> ,001	

See following for data and sketch of measurement locations.

Magasine, Plastic, For 5.56 mm., Mi6 Rifle Before and After Firing 1000 rounds.

Follower, Dwg. Ci-1042-5

			1ed 2.2			Ch	Specified			
		3.1		_	<u>Y.</u>		VO B.P.	.660	005	
		eft	Right	Lest	Right	Left	Right			(penge
No.	<u>\$</u>	ide	81de	81de	<u> 51de</u>	8140	81de	B.F.	A.P.	A.F. VS B.F.
1		256	•2.25¥	2.255	2.253	-,001	301	.679	.661	+.41
2		258	2.257	2.255	2.255	.003	.002	.685	.681	004
3		257	2.257	2.256	2.256	.001	.wi	.602	.682	.006
4	₹2,		2,253	2.255	2.255	+ .001	.063	.605	.682	003
5 6	•2.		2.256	2.254	2.254	.000	.002	.600	.681	301
6	2.	256	2.257	2.255	2.25	001	.003	.601	.683	.002
7 8	•2.	254	2.255	2,2,4	2.254	.000	.001	.661	.662	.002
3	2.	255	2.255	2.254	2.255	001	.000	.660	.681	.001
3	*2.	254	2.257	2.254	2.254	.000	00,	.579	.682	.003
10	2.	25 5	2.258	2.255	2.255	.000	.003	.685	.683	002
	Specif						Specifi	ed		
	.188 ±	.010	C	bange			.340 ±	005		Change
	B.F.	A.Y.		.P. vs	B.7.		B.F.	A.P.		A.F. VS B.F.
1	.184	.183	}	001			.341	.341		.000
2	.187	.185		.002			.341	.341		.000
3	.106	, 184		.002			.342	.3hú		002
lą.	.186	.184		.002			.342	.341		.001
5 6	.186	.105		.001			.342	.341		.001
6	.186	.185	,	.001			.342	.342		.000
7 3	.186	.185		.001			.341	.341		.000
3	.186	.185		.001			.343	.343		.000
9	.186	.185		.001			.343	.343		.000
10	.186	.185		.ool			.343	.342		001

^{*} Does not meet Deg. Specifications

Spring, Compression, Manaine, Boy. 04-1046-8 Free Length B.F. and A.F. 1000 rounds.

	Specif		Change		Spec11	Change	
	7.84	20"	A VB c	Ho.	7.34	.20	¥. ¥8
4	-6.075	3,014	061	7	-8. 055	7.366	069
19	≈ 8.063	7.931	.132	35	•%.೩೨೨	7. 产5	.075
15	48 , 006	7.903	.v 9 3	40	•7.915	7.845	.070
2:3	48.130	8,058	.0.2	45	46.053	7.993	.060
25	#8.05Å	7.963	.01	54	46,020	7.948	.072

Magazine, Plastic, For 5.56 mm., Mi6 Rifle Before and After Firing 1000 reunis. Deg. D 4-1042-3 (See Befs Shate: 1)

. Specified Dimension											
	.890-,	01.5	.890	015	.090	015	້. ອີ90⊸	a5	.700	+ "070	
Magazine (A)		(A	1)	_(B)_		(E	<u>ı) </u>	(C)			
Wo.	B, 7,	A.I.	B, F.	A,P,	3.7.	47.	B, F,	A.F.	A.L.	.712	
5	.887	.887	.875	.373	.889	.889	.883	.086	.712	.712	
10	.389	. 389	.875	.874	•.891	.891	.862	.360.	•.712	.73	
15	.887	.887	•.872	.872	.887	.886	.886	. 289	*.T12	.712	
20	.887	.886	.875	.875	.869	.866	.882	.882	•.711	.711	
25	.885	.805	. 375	.875	.889	.888	.661	.860	.720	. /10	
30	.886	.886	*.872	.873	.869	.886	.882	.881	.nc	.710	
35	.886	.886	• 872	.872	.889	.090	.861	.860	.709	.710	
40	.887	.887	.872	.813	.889	.889	.881	.882	.710	.711	
45	.887	.888	•.873	.872	.888	.868	.860	.881	.710	.710	
50	.887	.886	•.873	.874	.890	.889	.382	.863	4.711	נוק.	
Max.	Max. Change \$,001,002 \$,001,003 +,001.										

Specified Dispersion

	.700 + .010		. 700 + . (D)		.700 + .010 (FL)		
	B. f.	Ly.	A.F.	· 4.	B.J.	<u>A.7.</u>	
5 10 15 20	•.725 •.725 •.725 •.725	. वहां. ह्यां. ह्यां.	•.713 •.716 •.713 •.713	.713 .717 .713 .714	•.720 •.720 •.722 •.722	.720 .720 .723 .721	
"a.:.	3 a nge	002		<u>+</u> . 3.1		<u>+</u> 1	

Dens not meet Dry. specifications.

```
.724
25
    *.725
                          3.716
                                    .716
                                              *.722
                                                       .721
                                                       .722
               ,724
30
    *,726
                          *.717
                                    .717
                                              4,722
35
     *,725
                .726
                          *. (12
                                     . /12
                                              *.720
                                                       .719
40
     *.725
                . 724
                          4.714
                                    .715
                                              *,720
                                                       .720
45
     *.725
               .725
                          *. 713
                                    . /13
                                              *.722
                                                       .722
50
     4,725
                .725
                          *.714
                                     .713
                                              *.721
                                                       .720
                                         t.001
                           4.001
Max. Change
               e.002
```

Magazine, Plastic, For 5.56 mm., M16 Rifle Before and After Firing 1000 rounds. Dwg. D 4-1042-3 (See Ref. sketch 1 & 2)

Specified Dimension											
	2.285 +	· .olo	2.395	010	2.540	.015		. 44	45 + .01	5	
Mag	. <u>(</u> E	3)	<u>(F</u>	Ĺ	<u> </u>	_	Min.	Max.	(H)Min,	Max.	
No.	B.F.	A.F.	B.F.	A, F.	B.F.	A.F.		B.F.	A.		
5	*2.261	2,762	2.393	2.392	2.537	2.538	.451	÷53	.455	7356	
10	2.286	2,285	2, 195	2.383	2.535	2.535	.450	.459	.450	.459	
15	* 2.279	2,281	2.350	2.390	2.538	2.538	.450	.456	.451	.456	
20	*2.280	2.282	2.390	2,388	2.535	2.533	.452	.460	.453	.460	
25	* 2,279	2,283	2, 389	2.388	2,537	2.537	.449	.455	.450	.455	
30	*2.2 83	2,285	2.392	2.393	2.537	2.535	*.440	.450	441	.452	
35	*2.281	2.281	2,390	2.390	2.537	2.535	*.##O	.451	.447	.454	
40	*2.281	2,281	2.390	2.390	2.542	2.541	#. मेमेमे	.451	بليليا	.453	
45	#2.283	2.284	2.392	2.389	2,537	2,538	¥े गिगेगे	.454	بلبلب	.456	
50	*2.282	2,231	2.392	2.391	2.536	2.536	*.441	.454	. ५५८	.460	
Max	. Change	+.004	₩,	.012		002			+.007	+.006	

	1.118- (J)	,006	1.364	d Dimensi to 1.380 K)	1.396 to 1.412 (L)		
5 10 15 20 25 30 35 40 45	*1.106 *1.109 *1.107 *1.109 *1.107 *1.108 *1.108 *1.107 *1.109	1.106 1.108 1.100 1.110 1.110 1.106 1.106	1.366 1.367 1.365 1.367 1.368 1.366 1.367	1.367 1.367 1.367 1.366 1.366 1.366 1.367 1.369	1.400 1.403 1.366 1.402 1.402 1.400 1.402 1.402	1.403 1.407 1.403 1.402 1.402 1.404 1.401 1.407	
50	*1.108	1.108	1.367	1.367	1.402	1.404	

^{*} Does not meet Dwg. Specifications

Magazine, Aluminum, For 5.56 mm., Mi6 Rifle Before and After Firing 1000 rounds.

Follower, Dwg. 6249% (See Ref. sketch 3)

Specified Dimension											
	2.360 -	,005	2.257 t	0 2.272	.110	No?.	.680	,005		.005	
Mag.	. (4	A)	(B)		(0	C)	D	_	_(E)		
No.	B. F.	A.F.	B.F.	<u>A.7.</u>	B.F.	A.P.	B.F.	A.F.	B.F.	A.F.	
5	*2.362	2.360	*2.2 75	2 .2 69	.107	.111	*.686	.684	.323	. 321	
10	2.359	2.364	*2.280	2.277	.105	.110	. 682	, 684	. 323	. 322	
15	2.358	2 .3 5පි	2,268	2.274	.110	.113	.682	.682	.316	. 321	
20	2.358	2.361	2.272	2 .26 9	.108	.112	.682	. 679	. 321	. 319	
25	•2.361	2.358	2.270	2.272	.108	.108	684	.679	.323	. 321	
30	*2.361	2.357	*2.277	2.272	.107	.108	*. 688	, 680	. 323	. 321	
35	*2.361	2.359	2.270	2.275	,111	.109	*.688	. 683	. 322	. 323	
40	2.358	2.360	*2.275	2.271	.108	.112	.679	.676	.315	. 314	
45	2,360	2.360	*2.27 4	2.274	.108	.107	(84	. 683	. 323	. 323	
5 0	2,358	2.358	*2.274	2.2/3	.108	.110	. 685	.678	.319	. 321	
Max	. Cirange	+.005		± .006		+.005		008	•	.005	

Specified		_	Spring, Deg. 62187 Specified Dimension					
, 30 0 + , 605 (3°)	.750	[+ ,005 [c])	7.760 B.F.	+ .100 A.F.	Change			
5 *.2 92 .291	#. 744 ⁻¹	.745	7.798	7.680	-118			
10 * 291 .291	*.74 4	. 744	7.817	7.720	.107			
15 *.285 .285	.745	· 744	*7.657	7.585	.072			
20 .300 .299	*.741	.744	7.726	7.680	.046			
25 *.291 ,291	.7 47	.742	7 .69 5	7.665	.030			
30 *.293 . 293	*.7h4	.744	7 .667	7.559	,108			
35 *.2 93 .293	.749	.743	7.765	7.733	.032			
40 *.290 .291	749	.743	7.675	7.642	.033			
45 .295 .294	.747	.743	7.730	7.661	.069			
50 +.292 .292	.746	.743	7.749	7.637	112			
Max. Change + .00	L	~. 006			118			

^{*} Does not meet Dwg. Specifications

Magazine, aluminum, For 5.56 mm., M16 Rifle Before and After Firing 1000 rounds.

Magazine, Dwg. 61922 (See Ref. sketch 1 & 2)

Specified Dimension 2.288 Min. 2.380 Ref. 2.530 Ref												
Mag. (E)		<u>(F)</u>		(g)		Min Max(H						
NO. B.P A.F.	B.F.	<u>A.F.</u>	B. F.	A.F.	E). F.	_A.	F.				
5 2.300 2.301	2.375	2.374	2.531	2,531	.451	.452	.452	.452				
10 2,300 2,300	2.378	2 .2 76	2.533	2.530	.452	.455	.454	.458				
15 2,298 2,298	2.369	2.369	2 .52 8	2.528	.456	#.460	.459	.464				
20 2,296 2,297	2.376	2.375	2.528	2.529	.450	.458	.452	.458				
25 2.295 2.295	2.376	2.375	2,530	2.529	.450	*.459	.457	.463				
30 2.295 2.295	2.376	2.376	2,529	2,529	.457	#.402	.461	.466				
35 2.294 2.295	2.378	2.378	2.531	2.530	449	.455	.457	.460				
40 2.297 2.298	2.371	2.371	2,526	2.526	.450	.458	.455	.462				
45 2.290 2.290	2.369	2.370	2.526	2.526	844.	.455	450	.458				
50 2.299 2.298		2.380	2.530	2.528	.448	.455	454	.460				
Max. Change +.00	1	002		003			+.008	+.005				

			Specifi	Specified Dimension						
	1.101 to		1.357 ±.	003	1.396 to					
	<u>(J</u>	_	(K)	Cues	(L)					
5	*1.100	1.100	*1.352	1.353	*1.390	1.394				
10	1,101	1.100	1.357	1.354	1.405	1.409				
15	1,103	1,101	*1.349	1.350	*1.395	1.404				
20	1.103	1,103	1.358	1.357	1.408	1.414				
25	1.102	1.103	1.358	1.357	1,408	1.409				
30	1.102	1.102	1.355	1.355	-1.404	1.409				
35	1.101	1,102	1,359	1.356	1,408	1.413				
40	*1.101	1.102	*1.351	1,353	1.398	1.406				
45	*1,100	1.101	*1.35h	1.354	1.406	1.409				
50	1.104	1.105	1,358	1.358	1.405	1.415				
Max	Change	002		003		+.010				

^{*} Does not meet Dwg. Specifications

Magazine, Aluminum, For 5.56 mm., M16 Rifle Before and After Firing 1000 rounds.

Magazine, Dwg. 61922 (See Ref. sketch 1)

	Specified Dimension										
.885		.885	.005	.885	.005	.885 (B	F .005 F1	.798 t (c)	o .812		
No. B.F.	AyP.	B.F.	A.F.	B. F.	<u>A.7.</u>	B.F.	A.F.	B.F.	<u>A.F.</u>		
5 .884	. 884	.887	.887	.884	.884	.884	.883	*. 796	.796		
10 .864	.884	.883	.8 83	.885	.885	.885	.885	.803	.803		
15 .887	.887	.888	.888	.883	.883	.887	.886	.803	.803		
20 .883	.883	.884	.884	.884	.884	.888	.887	.800	.801		
25 .884	884	.885	.885	.882	.881	. පිට	.883	.799	.800		
30 .887	.887	.883	.883	.884	.884	.882	. 883	.800	.800		
35 *.870	.869	.885	884	.884	.884	.885	.884	*. 797	.79 8		
40 882	.882	ູ883	.884	. 382	.882	.882	.882	*. 796	.795		
45 .881	881	.883	.884	.883	.883	.885	. 885	.800	.800		
50 .883	.883	.884	.883	.885	.885	.885	.886	,800	.801		
Max. Chan	ge -,003	1	+. 001		001		±.001		<u>+</u> .001		

		Specified Dimension								
	.798 to	.812 CL)		o. 812)	.798 to .812 (m)					
5 10 15 20 25 30 35 40 45 50	.804 .805 .805 .806 .803 .803 .802 .802 .802	.804 .805 .805 .805 .804 .802 .801 .802 .803	.800 .801 .805 .803 .805 *.794 .801 .799	.801 .804 .804 .803 .804 .795 .800 .800	.805 .800 .806 .804 .805 .803 .802 .803 .801	.806 .801 .806 .805 .804 .802 .804 .801				
Max.	Change	+,001		+.001		+,001				

^{*} Does not meet Dwg. Specifications.

Reference Sketch 1

Plastic

Mag.	Ā	<u>B</u>	<u>c</u>	D	Mag. No.	<u>A</u>	<u>B</u>	<u>c</u>	<u>D</u>
,	903	900	77) 1	77. 2	l. a	Qua	400	77.6	716
1 2	.891 .890	.8 90	.711	.713	43 44	.891 .892	. 890 . 890	.716	.716 .716
2	.889	.890 .891	.710 .117.	.714	46	.890	.890	.716 .711	.713
r J	.892	.892	.714	.711 .719	47	.892	.891	.720	.715
3 4 ა	.892	.890	.710	.715	48	890	.889	714	.714
7	.892	.890	.711	710	49	.890 .890	.890	.716	715
8	.392	.890	.710	.711	ší	.889	.891	.725	.715 .713
9	.891	.890	.709	.718	52	.892	. 390	.709	.716
ú	.891 .893	890	712	.710	53	.892 .390 .892	. 790 . 889	.716	.715
12	.891	.891	.712	.713	54	.892	.890	.714	.716
13	.891	.891	.713	.714	56	. 891 . 889	.891	.711	.714
14	.891	.892	.712	נת.	57	.889	.889	בעד.	.711
16	.890	.890	.712	.712	58	.888	.889	.710	.71.2
17	. J30	.890 .891	.711	.713	59	. 889	.890	.715	.713
18	.891 .889	.891	.711	.719	61	.890 .890 .889	.890	.715	.713
19	.889	.890 .890 .890	.712	.714	62	.890	.889	.717	.714
21	.890	.890	.713	.712	63	.889	.890	.714	.713
22	.890	.890	.715	.714	64	.891 .889	.890	.727	.716
23	.891	.891 .889	.716	.715	66	.889	.890	.714	.713
24	.889	.889	.711	.712	67	.892	.891	.713	.715
26	.890	.889	.717	.712	68	.891	.889	.708	.715
27	.889	.890	.715	.712	69	.891	.889	.712	.714
28	Missin	g	770	era la	71	.892	.891	.709	.716
29	.891	.889	.712	.714	72	.891	.891	.713	.713
31	.890	.891	.711	.712	73	.892 .892	.892	.713	.715
3 2	.891 .889	.890	.713 .714	.713	74 76	.891	.891 .891	.713 .712	.717 .714
33	.889	.890 .890	.715	.713 .713		.893	.892	.713	.717
34 36	.889	.890	.709	712	77 78	.890	.890	יות.	712
37	.890	.890	.714	.712	79	892	.890	724	714
37 38	.891	.890	.724	.715	81	.890	.891	.711	716
3 9	892	.890	.710	718	82	.891	.891	.712	.713
41	890	.890	.714	714	83	.890	.890	708	712
42	.890	.890	714	713	84	.392	.891	712	715
			• •			- -		- •	

Reference Sketch 1

Plastic

Mag.	Ÿ	<u>B</u>	<u>c</u>	D
86	.891	.890	.709	.714
87	.890	.890	.7 15	.713
8 8	.891	.890	.71.6	.7-4
89	.889	.891	.704	.712
9 1	.889	.890	.716	.713
92	.890	.890	.710	.725
93	.890	.891	.720	.713
94	.892	.890	.716	.715
96	.889	.890	.724	.713
97	890	.890	.714	.714
98	.890	.891	.712	.714
99	.889	.890	.710	.713

Reference Sketch 1

Aluminum

Mag.	A	<u>B</u>	<u>c</u>	<u>D</u>	Mag. No.	Ā	B	<u>c</u>	<u>D</u>
	- .884	.886	_ .804	.805	b 3	.887	.882	.800	.809
1		.887	.804	.804	44	882	.885	.805	.805
2	.885	.86 8	804	.800	46	.886	.885	.800	.805
3 4	.87	.885	.805	.802	47	.889	.890	804	.810
6	.883 .882 .881	.887	.805	800	48	.885	884	.801	.806
7	.002	.887	.805	.800	49	. 887	.885	.802	.808
ģ	883	.887	804	804	51	.880 .885	.886	.802	. 804
9	.005	888	804	.800	52	. 885	.885	.804	. 607
ц	881	.884	.803	.801	53	.835	.885	.800	.805
12	981	885	.805	.805	54	. 885	.886	.801	.805
13	881	.889	.805	804	56	.882	.883	.802	.806
14	887	.886	808	807	57	.882	.885	.803	.808
16	881	.883	.804	804	58	.882	.886	.802	.804
17	885	887	808	804	59	.882 .882 .884	.881	.802	.801
18	881	584	, 804	.811	61	.863 .886	.881.	.805	.805
19	885	.885	.800	.811	62	.886	.884	.800	.810
21	. 883 . 881 . 884 . 887 . 881 . 885 . 885 . 885 . 885 . 888 . 888 . 888	884	.800	.803	63	.885 .887 .885 .882 .883	.885	.800	.805
22	888	.889	.800	.805	64	.887	.885	.805	°07
23	.887	,885	,800	.805	66	.885	.882	.800	.808
24	.883	. 886	.800	.800	67	.882	.884	.800	.800
26	.884 .887	.888 .887	.803	.806	68	.883	.885	.807	.801
27	.887	.887	.800	.808	69	.885	.885	.808	.803
28	.885	.885	.804	.806	71	.884	.887	.808	.803
29	.882	. 885 . 882	.801	.809	72	.884	.889	.804	.800
31	.890	.890 .884	.800	.807	73	884 884 882 881	.884	.808	.800
32	.885	.884	.803	.809	74	.881	.694	.805	.502
33	.888	.885	.805	. 810	76	.884	.885	.807	.801
34	884	.887	.800	.805	77	.883	.883	.804	.807
36	.885	.886	.800	.808	7 8	.881	.885	.804	.800
37	.883	.885	.800	.806	79	.888	.887	.806	.801
38	884	.885 .887 .886 .885 .884	.802	.810	81	.891	.882	804	.812
39	.885	.883	.806	.806	82	.886	.884	.806	.802
41	.882	.887	.802 .800	.803	83	.882	.884	.805	.802
j 15	.885	.887	.800	. 805	84	.885	.884	.800	.805

Reference Stortch 1

Alumina

(Disserten)

HO.	<u> </u>	3	<u>c</u>	D
86 87 88 89 91 92 93 94 96 97 98	.883 .885 .886 .887 .883 .881 .887 .889	.887 .880 .885 .884 .886 .885 .882 .883	.804 .800 .803 .802 .805 .802 .804 .800 .801	.804 .808 .808 .809 .804 .805 .805 .806 .807
99	.888	.882	.800	.809

Figure 1-1: Setup for Load Deflection Testing of Magazines for 5.56-104 Ammunition for M16 Rifles.

The range of the loads necessary to initiate movement of the spring loaded part of the magazines were:

- a. Hetal: 1.60 to 2.35 pounds (Control Magazine)
- b. Firstic (removable base): 1.10 to 2.40 pounds (Present Test Magazine)
 c. Plastic (cemented base): 1.35 to 3.50 pounds (Second EDT Test Magazine)

It should be noted that the value of 1.35 pounds for the plastic magazines with the cemented bases is exceptionally low for this group. If this are value were disregarded, the new low would be 2.65 pounds.

	4.86	¥	The last of the	•	•	• • •
		Meral M	makines for		, , , , , , , , , , , , , , , , , , , ,	
i.C		- Amesancia W	for Mo			
3		1.			•	
3	. ; ; ; ; , , , ,	∔ → -	• • • •	• • • • •		1.
		1	•			••
. 2.2	ا دیکھیے۔ د مسلم مسلم مسلم	1		1		
• • •	-	•		i	•	
• .		:		1		
		- -	• • • •			
· •		.		مده ا		
	THE RESERVE	* * * * * * * * * * * * * * * * * * *	٠. م		•	The second secon
	1			1 7 7 7 7	- 54	•
• •	. 4	Γ	.	1-1		
	• 1	<u>I</u>				
1. 1. Page 1.			1 1	j.,,		
•		1		' I . '		
		; . /		1 1		
i	J	1		7	+ }	
	1]		\mathbf{H}	f .	
	_	⊢i -	÷	1		
- L		! !		14 . 1 . 1		
- L .		•	4	• •		
		•	1	1 .		· -
		1	1	1		
	4.	: (j .	1		
			-			
		1		<u> </u>		
	•				1	
- 1,6		. +				
		. •		1		
-,	• • •	. [1.7	11		
				<u> </u>	.	
				<u>iI</u>		
			112. 112.	#		
	•	! } * * * * * * * * * * * * * * * * * * *		#		11,27,1 .1 .11
				#		
 -0						
	L	4				
No.	75-41 K		85	90	1 95 - 8a, 1	i Où : : : :
4	= = = = = = = = = = = = = = = = = =	į		· · · · · · · · · · · · · · · · · · ·	•	a territoria de la compansión de la comp
			0 2001			The state of the s
	•	I I	. Selfras class	d drawny or		ran markara eraker — markara Merandan menden kan di

	Load on perimotion Places indimines for 1 Amnucition for Mis Hill	96-ma a (Removalle Base)Pro	mest Test Item.
	As I		
35			
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1			
ا د د			
4.0			
1.5			
1.0			
0.9			
9	10 No. 15 No.	20 Na 25 M	o. 30 Re 35
	po final in	-32	

7	, , , , , , , , , , , , , , , , , , ,	Lodd ve Delibetion			
3		PLANTE PANEL SON FOR PLANTED RES	AD-ME	e Sauc) Present Fest Its	
	· · · · · · · · · · · · · · · · · · ·				
			4 4.4 ± 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		1
			1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		
	1 1 1 1 1 1				
		· · · · · · · · · · · · · · · · · · ·	,		
				Property of	
	#		.		
البق	f				
• • • •			† #		
					,
	•		1-1		1
25					
					<u> </u>
					<u> </u>
2-0					
2.0			4		·
- []	A-4				
- -					
1.5					1 =
					1
	- 				
					e e a a maria. Di e alamani e a di e
1.0					randa a
		1.			
15.0		apad a jaquana tahun ahan 1 James a			
	++		ended exemples of		
	,				
				4	
do	. 75 No.	55 #o 85 #o	20		+
graduate and the second				95 100 100	
		D 10-20-1			
	. 4	ستأسيم فوالما والمايا والمتوية بالأسميانيون	قان يەلىكىلىك سىلىكىلىك سىلىكىلىك	بحبث فتحكمه فالما فالمتحدد بالمحمد	استستنجيم حبيراتا

Dimensional variation for a sample of 10 Second EDT Test magazines.

Measurements are given in inches. Measurements are from new magazines.

Reference Skotch 1

Dimension

<u>A</u>	. <u>Al</u>	2	<u>B1</u>	<u>c</u>	$\overline{\mathbf{D}}$
.897	. 505	.891	.837	.711	.716
to	to	to	to	to	to
. 901	. გმ2	894	.891	. 71 5	.720

Reference Sketch 1 & 2

Dimension

E	7	<u>G</u>	Ħ	<u>J</u>	\overline{K}	Ţ
to	to	to	to	to	1.371 to 1.376	to

	1 17				LONG VE	Define	tion			;		,	; ; ; ; ; ; ;	4 ·
	S		1		Ammuni t	ion for	M16	Ritter	(Cemar	ited Ba	50) Se	coad I	R . 1	1 1 1 1 1 1 1 1 1
					1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -			1						4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4
	3					· . ·								<u>.</u>
1			†		• • • •				:			: . : : . :		•
+	3 10						•							· .
.	-1.	,,,		W			*		•	مب			-	* * * * * * * * * * * * * * * * * * *
*	2	+ :-							1		+			· · · · · · · · · · · · · · · · · · ·
•	2.0					- +				· · · ·			· · · · ·	·- ******
					•			•					.	
	1_5	-		1			-		·					
					2		-						-	
	1.0		***	1						-				
	0,3							7.			• +-	- ya		
					The second secon							• • • • • • •		
i				1 -				4.1						
1	Mo	II.	-	ZA			No.	4 0	ilo.					The second secon
•		<u>† :</u> -		1		9071ec1	index I=3						JE	The second secon

	* * * * * * * * * * * * * * * * * * *		Load	ys Deflection is Magasians ition for Mi	tor 313		1	1
	· · · · · · · · · · · · · · · · · · ·		Armania	ution for Ma	ALFADA (Co	meaced save)	pecond EFT.	:
	• • •				•	•	•	1
	* * * * * * * * * * * * * * * * * * *	(84)						1
	• •	5						
		ĭ			4			
		3.0		ا مر				
• •								
		<u>.</u>	•					
			•			* · · · * · · · · * · · · * · · · · · ·	-	
		2.0	-					
		3,0			1			
•								
·	-	1.5		<u> </u>				+
			: . •	•	;			
		1.0				*** *** ***		
	_	4. E	+					
					11.			
		0.5	***					
* * * * * * * * * * * * * * * * * * *	. 4. 4. 4. 4	n .		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1				
		AE	6a No.	74 Bo.	831	Ja Ja	134	
	· · · · · · · · · · · · · · · · · · ·			D 200" s				
	- 1	·	. <u>.</u>		1-37			

Table I-I. Firing Sequence for -65°F

Mode	of Fir	e, by	Magazi	ne No.	Cycle 1	Cycle 2	Cycle 3	Cycle h	Cycle 5
В	A	<u>s</u>	В	S	Wpn No.	Wpr. No.	Wpn No.	Wpn No.	Wpn No.
cioi	T101	C105	T1 02	C103	11	12	13	14	15
T103	C104	T104	C105	T105	12	13	14	15	
C106	T106	C107	T107	C108	13	14		11	11
T108	C109	T109	C110	T110			15		12
C111					14	15	11	12	13
CIII	T111	C112	T112	C113	15	11	12	13	14
T113	C114	T114	C115	T115	11	12	13	14	15
C116	T116	C117	T117	C118	12	13	14	15	ii
T11 8	C119	T119	C120	T120	13	14	15	ií	12
C121	T121	C122	T122	C123	14	15	īí	12	13
T123	C124	T124	C125	T125	15	ii	12	13	14
								/	
C126	T126	C127	T127	C128	11	12	13	14	15
T128	C129	T129	C130	T130	12	13	14	15	11
C131	T131	C132	T132	C133	13	14	15	11	12
T133	CI 34	T134	C135	T135	14	15	11	12	13
C136	T136	C137	T137	CI 38	15	11	12	13	14
T1 38	C139	T139	C140	T140	11	12	13	14	15
Clul	T141	C142	T142	C143	12	13	14	15	11
T143	टामा	T144	C145	T145	13	14	15	11	12
C146	T146	C147	T147	C148	14	15	ú	12	13
T148	C149	T149	C150	T150	15	11	12	13	14

Note: The prefix (C) and (T) to the magazine number represents CONTROL and TEST, respectively.

The modes of fire are abbrewiated:(B) for 3- to 5-rd bursts, (A) for 20-rd automatic bursts, and (S) for semiautomatic firing.

Table I-II. Firing Sequence for +155°F

Mode	of Fir	e, by	Magazi	ne No.	Cycle 1	Cycle 2	Cycle 3	Cycle 4	Cycle 5
В	A	S	В	<u>S</u>	Wpn No.				
C151	T151	C152	T152	C153	11	12	13	14	15
T153	C154	T154	C155	T155	12	13	14	15	11
C156	T156	C157	T157	C158	13	14	15	11	12
T158	C159	T159	4160	T160	14	15	11	12	13
0161	T161	C162	T162	0163	15	11	12	13	14
T163	C164	7164	C165	T165	11	12	13	14	15
C166	T166	C167	T167	C168	12	13	14	15	11
T168	C169	T169	C170	T170	13	14	15	11	12
C171	T171	C172	T172	C173	14	15	11	12	13
T17 3	C174	T174	C175	T1.75	15	11	12	13	14
C176	T176	C177	T177	C178	11	12	13	14	15
T178	C179	T179	C190	T180	12	13	14	15	11
C1-1	T181	C182	T182	4183	13	14	15	11	12
T183	C184	T184	C185	T1 85	14	15	11	12	13
C186	T186	C187	T187	C188	15	11	12	13	14
T188	C189	T189	C190	T190	11	12	13	14	15
0191	T191	192ن	T192	C193	12	13	14	15	11
T193	0194	T194	C195	T195	13	14	15	11	12
C196	T196	C197	T197	C198	14	15	11	12	13
T198	C199	T199	C200	T200	15	11	12	13	14

Note: The prefix (C) and (T) to the magazine number represents CONTROL and TEST, respectively.

The modes of fire are abbreviated: (B) for 3- to 5-rd bursts, (A) for 20-rd automatic bursts, and (S) for semiautomatic firing.

Table I-III. Malfunction and Nonfiring Defects Data for +155°F

Magazine	No. o	of Mal	functio	ns, l	эу Ту	p e		De	fact		
Туре	Stub-1	BOB	FF-20	FBR		11	FC-DR	OBL	TTI	TTE	TOTAL
Test	0	0	58	6	2	d_1	1	17	0	0	85
Control	1	3	0	1	0	1	0	1	13	6	24

- a: Two of the three malfunctions resulted from drop-test damage to the feed-lip area of magazines C157 and C161. The feed-lips were reshaped prior to firing the second cycle. No further malfunctions occurred with these two magazines.
- b: These malfunctions were caused by inadequate magazine design. The last rd. in the magazine was ejected from the feed-lips prior to stripping by the bolt. Eighteen of the fifty eight malfunctions required retraction of the charging handle and actuation of the bolt release to clear; the remainder by actuation of the bolt release only as the bolt was locked to the rear.
- c: Two magazines were rendered inoperable due to a broken right feed-lip; one during cycle 1, the other during the third cycle.
- d: Partial breakage of the right feed-lip allowed retension of only 19 rounds. The magazine completly failed to operate after firing three cycles (ref. c above)
- e: Loosening of the floor plate on both test and control magazines did not adversely influence magazine functioning. Test magazine No. Tl68 was made without a floor plate detent (ref. figure 2.2-1 and I-1). Control magazine No. Cl60 had a broken floor plate clip rivit (lower) which allowed the floor plate to slide out of position.
- f: The tight insertion and retraction of the control magazines was caused by drop-test damage which laterally expanded the sides of the magazines when dropped on the feed-lips. Function performance was not degraded by this condition.

Table I-IV. Cyclic Rate of Fire Data for +1550F

No.Rds	0000	0000	000 0	9 000	& C C C'	
		92 50 935 50 935 50	900 50 - 500	935 26	867 19 - 20 871. 20	. 7tg
Control Test Rds/Min	937	910	912	924 - 921	859	8
100 I	151	. 30 . 181	25. 181	· E · 8	161	•
Magasine Control	164 189	151 - 179	169 194	159 184 -	174	1
Weapon No.	12	ສ	7.7	15	ä	Avetage
Trial No.	~					*
No. Rds.	20 20 19 20	2000 2000 2000	17 20 20 20 20	20 20 20 20 20	19 20 20 20	1
da/Min.	829 - 850	928	%. %.	895 910	856 - 930	894
Cyclic Rate, Rds/Min. Control Test	838 - 840	887 _ 917	897 - 900	857 - 867	910 910	882
No.	151	161	156 181	٠٤٠%	161	•
Magazine No. Control Test	_ 16!i 189	15h 179	- 169 -	159	174 199	•
Weapon No.	=	12	13	717	15	Average
No.	4					YA

Table I*IV (Cont'd)

Cyclic Sate, Rds/Hm.		902 - 926	935 - 929	863 - 877 859 - 881	942 942	916 016
اندان	_				1	
No. Rds.	20 20 19	50 00 50 00 50 00	20 20 20 20	20 20 20 19	\$ 50 \$ 50 \$ 50 \$ 50 \$ 50 \$ 50 \$ 50 \$ 50	1
Trial Weapon	गृह	15	u	12	13	Average
Mapazine No.	. 151 164 - 176 - 189		- 156 - 161 - 181 - 181	159 - 171 184 - 196	161 - 471 - 471 - 991	,
Cyclic	1 - 921 6 - 912		6 - 865 1 - 859		1 %Qu. 5 895	912
tate, Rds/Min	910	941		944 935		912
No. Rds	8888	20 20 20 20 20 20	8888	2222	20 20 20 20	

Table I-IV (Cont'd)

Tetal	Weapon	Mazazine	No.	Cyclic Rate	, Rds/Tin.	flo. ilda.
Mo. 1		Introl	Test	Control	i'es t	<u>Fird</u>
ب	15		3 (3		002	10
5	15	161	151	- 0:3	927	19
		164		917	-	20
		-	176	-	926	20
		189	-	917	-	50
	11	154	-	859	-	20
		-	166	•	877	<i>5</i> ∪ '
		179	_	840	_	20
		•	191	-	862	19
	12	_	156	_	951	20
	••	169	1,70 =	المباو	<i>7.</i> 7#	50
		10)	181	744	949	50
		194	-	93 7	747 +	5 0
	13	159	-	893	-	20
	-	-	1.77	-	904	20
		184	-	897	-	20
		•	146	-	915	20
	14	_	161		920	19
	14	174		919	72()	
		114	186		917	20 20
		199	100	910		20
		177		710		20
Ave	erage	-	-	903	915	-

Table I-V. Firing Sequence for Part I (Five Loadings) of Function and Durability Test

Mode B	of Fir	ъ, by	Hagazi B	ne Mo.	Cycle 1 Wpn No.	Cycle 2	Cycle 3 Wpn No.	Cycle L	Cycle 5 Wpn No.
Tl	CJ.	T2	C2	T 3	1	2	3	<u>u</u>	5
C3	Th	Сħ	T 5	C5	2	3	Ä	5	6
76	c6	17	C7	īð	3	4	5	6	7
C8	19	C9	TlO	C10	Ħ	5	6	7	8
Tll	Cll	T1 2	C12	T13	5	6	7	8	9
C13	Til	C14	T15	U15	6	7	8	9	10
716	Cl	T17	C17	T18	7	8	9	10	1
C1 8	T19	019	T20	C20	8	9	10	1	2 3
T21	C21	T22	C22	T23	9	10	1	2 3	ر 4
023	¹ 24	C24	T25	C25	10	3.	2	,	
T26	C26	T27	C27	T28	ì	2	3	<u>li</u>	5 6
C28	T29	C29	T30	C30	2	3 4	ñ	5 6	0
73%	C31	T32	C32	T33	3	4	5		7 8
C33	T3L	034	T35	C35	4	5 6	6	7 8	9
T36	C36	T37	C37	T38	5	₽ 2	7 8	9	10
C38	139	C39	T)40	ChO	6	7 8			10
TL1	Chl	TL2	C/15	T43	7 8	9	9 1 0	10 1	2
C43	Thi	Chili	T45	CLIS TELS	9	10	10	2	3
T46	C46	T47	C47	ТЦ8 С50		1	5	3	4
CP8	T49	C49	T 50	650	30	1	£.	,	4
T 51	C51	T52	C52	T53	1	2	3	4	5
C53	T54	C54	T55	C55	2	3	L	5 6	6
T56	C56	T57	C57	T 58	3	4	5 6	6	5 6 ? 8
c58	T 59	C59	T50	C60		3 4 5 6		7	8
T61	C61	T62	C62	T63	4 5 6	6	7	8	9
c63	T64	C64	T65	C 65		7	8	9	10
T66	୦66	T67	C67	T 68	7	8	9	10	1
C6 ^p	T69	C69	T7 0	C70	8	9	10	1	2
T71	C71	T72	C72	T73	9	10	1	2	3 4
C73	T74	C74	175	C75	10	1	2	3	4
T76	C76	777	C77	T 78	1	2	3	l ₄	5
C78	T 79	C79	T 80	C80	2	3	4	5	6
T81	C81	T82	C82	T 83	3	Ц	4 5 6	5 6	7 8
C 83	TS 4	C84	T85	C85	3 4 5 6 7	4 5 6 7 8		7	8
т86	C86	T87	C87	188	5	6	7	8	9
C88	T 89	C 89	T90	C90	6	7	8	9	10
T91	C93:	T92	092	193	7	8	9	10	1
C93	T94	C914	T95	C95	8	9	10	1	2
T96	C96	T97	C97	T9 8	۶	10	1	2	1 2 3 4
C9 8	T99	C99	T1.00	C100	10	1	2	3	4

Firing Sequence for Part II (50 Loadings) of Fur ction and Durability Test Table I-VI.

Cycle 46-50 Wpn No.	はどかてきないまるろ	ANOLOGIANA
Cycl.e 41-45 4pn No.	とせいなるようなけ	こまれるのとみられる
Cycle 36-40 Mpn No.	00420000000000000000000000000000000000	これののよりとれてる
ycle 31-35	Howanore of	よるともなれるでき
Cycle 26-30 Wpn No.	0 0 0 0 0 0 0 0 0	037005
Cycle 21-25 Wpn No.	のひょごうはどらて を	0710m2N9~8
Cyclæ 16-20 Wpn No.	40VEMBHU90	76%EMBH198
Cycle 11-15 Wpn No.	onteno Hoosa	65 62 co 45
Cycle 6-10	75 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	VEWNTHORAN
ne No.	1115 115 115 115 115 115 115 115	250 250 250 250 250 250 250 250 250 250
Magazine No.	010 125 150 110 1150 120 120	635 610 610 610 610 610 610 610 610 610
Sev	220 220 220 220 230 230 200 200 200 200	23 22 23 23 23 23 23 23 23 23 23 23 23 2
of Fire,	25 25 25 25 25 25 25 25 25 25 25 25 25 2	52 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5
Hode	25.55 25.55	130 130 130 130 130

The prefix (G) and (T) to the magazine number represents CONTROL and TEST, respectively. The modes of fire are abbreviated: (B) for 3- to 5-rd bursts, (A) for 20-rd sutomatic bursts, and (S) for semiautomatic firing.

Note:

Table I-VII. Cyclic Rate of Fire Data for Function and Durability Test (Cycles 1 through 5)

Test											
Magazine			APC	Weap	on Nu	umber					
No.	1	2	3	4	5	6	7	8	9	10	
4		7 83	831	865	869	844					
9				827	792	838	881	855			
14						825	844	823	869	832	
19	840	789						808	823	809	
24	836	758	881	893						801	
29		755	844	879	851	838					
34				825	813	834	891	832			
39						801	859	836	840	815	
ليلا	832	768						798	818	811	
49	838	780	855	873						788	
54		755	844	871	840	847					
59				832	813	845	879	836			
64						802	871	844	838	820	
69	829	77 8						802	825	823	
74	842	789	855	877						794	
7 9		741	849	885	842	845					
84				847	829	857	883	842			
89						799	859	847	829	816	
94	831	767						815	832	829	Average,
99	<u>851</u>	<u>798</u>	<u>859</u>	879						801	All Wpns.
verage	837	772	852	863	831	831	871	828	834	£12	831

Table I-VIII. Cyclic Rate of Fire Data for Function and Durability Test (Cycles 1 through 5)

Control											
Magazine			APG	Weap	on Nu						
No.	1	2	3	4	5	8	7	8	9	10	
ı	845	781	838	904	845						
1 6			192	832	818	842	871				
11					783	789	849	845	836		
16	825						825	809	811	840	
21	825	816	855				•		806	794	
26	823	753	832	875	831						
31			776	855	832	825	855				
36					7 89	799	861	827	829		
41	806						825	811	820	811	
46	831	791	851						788	770	
51	820	759	836	801	836						
56			798	853	834	823	85 7				
61					798	82 0	855	8 2 5	831		
66	818						845	815	834	804	
71	825	778	855						799	796	
76	816	776	840	871	829						
81			834	885	855	842	859				
86					798	838	867	836	820		
91	820						847	811	831	801	Average,
96	840	786	869						811	825	All Wpns.
verage	824	780	831	868	821	822	851	823	818	805	825

Table I-IX. Cyclic Rate of Fire Data for Function and Durability Test (Cycles 6 through 50)

Magasine	Cycle			APO	Weap	on Nu	mber						
No.	No.	I	2	3	4	5	6	7	8	9	10	Avg.	
C 5	6-15	820	806	863	919	845	851	867	822	834	853	848	
	16-25	792	80 1	855	887	832	853	871	834	832	801	836	
	26-35	809	804	879	902	845	869	875	851	844	811	849	
	36-45	813	806	883	904	844	857	881	847	829	825	849	
	46-50	•	808	-	887	-	847	•	840	-	829	842	
	Average	808	805	870	900	8115	855	87L	839	835	824	845	
C 30	6-15	816	825	863	879	853	831	881	829	842	792	841	
	16-25	806	798	873	877	845	855	871	822	832	192	837	
	26-35	809	811	877	897	853	840	879	851	845	816	848	
	36-45	802	809	871	906	851	871	877	842	840	838	851	Average,
	46-50	•	799	•	904	-	844	•	834	-	825	841	All Wpns.
	Average	808	808	871	893	850	8148	877	836	840	812	8111	814
T 20	6-15	8 /	808	861	902	883	853	912	827	851	818	856	
	16-25	818	806	859	897	849	853	879	844	845	813	846	
	26-35	829	798	887	910	859	863	881	867	849	825	857	
	36-45	818	796	887	921	857	891	879	865	849	831	859	
	46-50	823	- 755	<u>867</u>	- -	845	- 777	873	77.5	844	~	850	
	Average	ਸ 26	802	872	908	859	865	885	851	878	822	832	
T 45	6-15	815	815	89.	893	847	857	883	834	867	823	852	
	16-25	806	808	869	902	849	861	883	840	845	809	847	
	26-35	823	802	881	902	853	875	881	847	867	842	857	
	36-45	822	791	887	908	847	881	977	853	832	814	854	Average,
	46-50	815		867	•	845	_	867	•	838		846	All Wpns.
	Average	816	804	879	901	सम्ब	868	878	844	850	830	852	842

Table I-X. Malfunction Data for Function and Durability
Test (Cycles 1 through 50)

Magazine	Cycle	a Magazine		bMal	funct	ion T	ype,	Ну We	apon	Numbe	r		
Type	No.	No.	1	5	3	4	5	6	7	8	9	10	Total
Test	1	23(S) 41(B) Total	0	0	<u> </u>	0	0	0	FF	0	FF 1	0	$\frac{1}{2}$
Control	5 5 25 32 32	28(B) 43(B) 15(B) 20(S) 40(B) Total		FBR	0	0	0	FBR 2FC FBR	0	FBR	_	0	1 1 2 1 1

a: The letter in () is the mode of fire of the weapon at the time of the malfunction.
b: The malfunction abbreviations are as follows - FF (failure to feed), FC (failure to chamber), and FBR (failure of bolt to remain rearward after firing last rd. from magazine).

Note: A total of 20,000 rounds was fired with each magazine type; 100 magazines tested with 100 rds. each (five loadings) and an additional 900 rds. from ten magazines selected from the origional 100 samples. Ten MI6Al rifles were used.

Test Test Centrel 988 988 9 9 0 FRONT

The Armston indicate from 5 seguence for to Ton control now in the Veyrous to 1.

Figure I-2: Diagram of Magazine Array for the Static Dust lest.

Table XI. Malfunction Data for Mud Test

	APG	Magazine	Mode of	No. Rds.		è	Malfur	ctions	۵	Type					
Туре	wpn No.	No.	Mire	Fired	FS-1	FS	ည	FC FL	È	P.	BOB BOB	HE S	3	Æ	Total
اء 8 4 1	٦	351 352 353 354 354	B S S Total	20 20 44 20 20 20 20 20	o	0	a ank	nap	mn 4	0	1 0 1	0	0	6	12884
Control	Ħ	36.7 36.2 36.3 36.6 36.6	B S B Total	20 20 20 20 20 54 85	4	727	02271	122	400	~ ~		o		- 4	100 110 119 129
€- 10 10 10 10 10 10 10 10 10 10 10 10 10	~	36.1 36.3 36.3 36.4 36.5	B S S Total	20 25 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	o	0	m100	9 11 6	~ ~		0	0	0	0	0 5 5 5 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7
Contr.1	~	351 352 353 354 354 354	B S B Total	20 F F F S S S S S S S S S S S S S S S S	0	-	800 F	10 10 10 10 10 10 10 10 10 10 10 10 10 1	0	C		0	0	- 1-	112 × 2 × 2 × 2 × 2 × 2 × 2 × 2 × 2 × 2

Table XI (Cont'd)

Type Wpn		Magazine	Mode of	No. 1948.		۶	Malfunctions,	nc tron	۵	1.700			•		,
υ s	wpn No.	No.	2	Fired	P S-1	FS	ပ		R.	台	808	FFR	2	<u>\$</u>	Total
	6	356 357 358	a < ຫ∶	20 00 °			,	~			~	~			000
		358 360	S Total	25.2	0	0	- h	~- h	0	0	r	r	0	0	3115
Control	<u>«</u>	346	¤ < ∷ (2222			~	≈ o v i			~	~			61 L
		350	S Total	78 02	0	c	۵ م	20 20	0	0	r	-	0	0	2 7 6%
7 2 8	7	97.5 7.7 7.7 7.7 7.7 7.7 7.7 7.7 7.7 7.7	ឌ≼ហ≖	2222				~							0000
		350	S. Total	100	0	0	0	~ II	0	0	0	0	0	0	11
Control	-7	35 357 358 559	an ≪ vo an	8 5 4 8 8	44			6 1 m							0 ~ ~ 0
		<u>S</u>	S Totel	20	2	6	þ	داء	0	0	0	0	0	0	7

- a: These figures represent the number of rounds fired from a magasine prior to incapacitation of the wespon or magazine. The letter (m) or (w) adjacient to the numbers indicates the item which was rendered incoerative due to mud contamination.
- The following malfunction types were not related to magazine performance FC, FL, FFR, AND FJ. The primary cause of the stoppages was mud contamination <u>.</u> م

1. Deficiencies

Deficiency

First two cartridges loaded into the test magazine stack one on top of the other which reduces magazine capacity to 19 rounds and causes failures to properly feed (DF) which are not immediately clearable (paragraph 2.2).

Suggested Corrective Action

Revert to the earlier follower design (round cartridge profile). Limit follower tilt (rotation about the longitudinal axis) so that premature release of the last round does not reoccur (see No. 3 below).

Remarks

The cartridge profile of the follower does not allow the first round entering the magazine from the charger clip to laterally shift from center to left side.

2. Shortcomings

Shortcoming

Magazine floor plate completely separates from magazine body when the loaded magazine is base-dropped (paragraph 2.4).

Incomplete formation of Relocate the position the test magazine floor of the die gating to plate detent ball (paragraph 2.2 and Figure 2.2-9).

Suggested Corrective Action

Increase height of detent ball. Eliminate frontal protrusion of the floor plate below the magazine body.

ensure complete formation of the floor plate lock detent.

Remarks

The plasticity of the test magazine material contributes to this defect. Only partial separation was experienced at -65°F.

At present, die gating is located at the end of the floor plate opposite the lock detent. The material flow pattern created is not uniform.

3. Corrected Deficiencies

Deficiency

Last cartridge in test magazine prematurely releases from the feed lips and causes a weapon stoppage.

Corrective Action

Change follower profile from round cartridge to rectangular profile. Increase side bearing surface on the follower.

Remarks

Although this change corrected the feeding problem, it caused the deficiency related in No. 1 above.

(Followine Page Blank)

APPENDIX III REFERENCES

- Materiel Test Procedure (MTP) 3 2 513.
- Miller, Franklin H., Final Report of Engineer Design Test of Magazine, 20-Round, Disposable, for M16A1 (XM16E1), Rifle, USATECOM Project No. 8-7-0200-03.
 Aberdeen Proving Ground. Report No. 2536, October 1967. (Distribution Controlled by Project Manager, Rifles. AD 820 840L.)
- 3. Drawings of Plastic Magazine Components (by USALWL):
 - a. Housing, Magazine, M16, No. D4 1062/3.
 - b. Spring, Compression, Magazine, No. C4-1042-8.
 - c. Follower, No. C4-1042-5 (Original).
 - d. Follower, No. C4-1042-5 (Redesigned).
 - e. Floor Plate, No. C4-1042-11.
 - f. Assembly, Plastic Magazine, No. C4-1042-6.
- 4. Wilson, A., Final Letter Report of Product Improvment Test of Redesigned Bolt Catch, USATECOM Project No. 8-WE-603-016-002 (8-9-0200-34). Aberdeen Proving Ground. 6 August 1969.
- 5. Wilson, A., Final Report on Combined Initial Production and Inspection Comparison Test of M16A1 Rifles, USATECOM Project Nos. 8-9-0200-25 and 8-9-0200-27. Aberdeen Proving Ground. Report No. 3247, May 1969. (Distribution Controlled by Project Manager, Rifles, ATTN: AMCPM-RS. AD 854 075L.)
- 6. Test Directive (STEAP Form 1028), Disposable Plastic Magazine for M16A1 Rifle, 26 July 1968.
- 7. Letter from USALWL, 16 July 1968, Magazine, Disposable, Plastic, 5.56-MM and Bandoleer, LWL Task 07-F-66 with Test Plan Outline as Inclosure 1.

Unclassified				
Security Classification	- 1			
	NTROL DATA - R			
Security classification of title, body of abstract and indexing ONIGINATING ACTIVITY (Corporate suther)	ng annotation must be			
		Unclassified		
Materiel Test Directorate Aberdeen Proving Ground, Maryland 21005	2" GRILIP			
•				
S REPORT TITLE				
ENGINEER DESIGN TEST OF 20 ROUND PLAN	STIC MAGAZINI	E FOR MISA	1 RIFLES	
Final Report 12 December 1968 to 26 August	1060			
s au thomisi (First name, middle initial, last name)	1909			
Franklin H. Miller				
A REPORT DATE	[70 131A)	+ PAGN'	THE NO. 11 CEPTS	
October 1969	118		7	
M. CONTRACT OR GRANT NO	Se. Callul AYOR		DE P(8)	
Not applicable	APC-MT-3350			
A PROJECT NO				
USATECOM Project No. 8-WE-602-016-002	D. OTHER BEFC	AT FOR ARY	ther numbers that may be acalgred	
	this report			
4.				
TO DISTRIBUTION STATEMENT	1 1 1 1 1 1 1 1			
This document may be further distributed by any Officer, US Army Limited War Laboratory, ATTN		specific prior	approval of Commanding	
Officer, Go Army Emitted War Educatory, ATTIV	. Chocke ob.			
11 SUPPLEMENTARY NOTES	12. SPONSORING	MILITARYCTI	V:1 Y	
None	USALWL			
None	j			
13 AGBTRACY				
The third in a series of engineer design tests of	of 20-round plas	tic magazines	for the M16A1 rifle was	
conducted at Aberdeen Proving Ground by the I	Materiel Test Din	ctorate from	12 December 1968 to 26	
August 1969. Equal numbers of test and contri	ol magazines wer	e subjected	to a series of comparative	
evaluations to determine function performance of	characteristics and	d material du	rability at -65°F, +155°F.	
and ambient range temperature (+70°F ± 30°F),	and in adverse co	onditions of r	mud, sand, dust, and water.	
The test magazine material was checked for compa	atibility with vari	ous nonstand	ard solvents and lubricants.	
A displacement - time study was made of the ma				
during firing. The test results reveal that the test				
performance in adverse conditions and to increase	material durabilit	y⊶enni	perature.	
\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \				
•				

Unclassified

Bocarity Classification

Unclassified
Security Classification LINX A LINK C LINK . **KEY WORDS** ROLE ROLE ROLE Plastic magazine (nylon, type 6-10) Rifle, 5.56-mm, M16A1 Function performance Durability Environmental conditions lubricants Positioning Guaracteristics

Und	lassified	
Security	Classification	